Как устроен микрофон

Микрофо́н (от греч. μικρός — маленький, φωνη — голос) — электроакустический прибор, преобразовывающий звуковые колебания в колебания электрического тока. Служит первичным звеном в цепочке звукозаписывающего тракта или звукоусиления. Микрофоны используются во многих устройствах, таких как телефоны и магнитофоны, в звуко- и видеозаписи, на радио и телевидении.

Содержание

Устройство микрофона [ править ]

Принцип работы микрофона заключается в том, что давление звуковых колебаний воздуха, воды или твёрдого вещества действует на тонкую мембрану микрофона. В свою очередь, колебания мембраны возбуждают электрические колебания; в зависимости от типа микрофона для этого используются явление электромагнитной индукции, изменение ёмкости конденсаторов или пьезоэлектрический эффект.

Свойства акустико-механической системы сильно зависят от того, воздействует ли звуковое давление на одну сторону диафрагмы (микрофон давления) или на обе стороны, а во втором случае от того, симметрично ли это воздействие (микрофон градиента давления) или на одну из сторон диафрагмы действуют колебания, непосредственно возбуждающие её, а на вторую — прошедшие через какое-либо механическое или акустическое сопротивление или систему задержки времени (асимметричный микрофон градиента давления).

Большое влияние на характеристики микрофона оказывает его механоэлектрическая часть.

Классификация микрофонов [ править ]

Динамический микрофон [ править ]

Динамический микрофон — наиболее распространённый тип конструкции микрофона. Он представляет собой мембрану, соединённую с лёгким токопроводом, который помещен в сильное магнитное поле, создаваемое постоянным магнитом. Колебания давления воздуха (звук) воздействуют на мембрану и приводят в движение токопровод. Когда токопровод пересекает силовые линии магнитного поля, в нём наводится ЭДС индукции. ЭДС индукции пропорциональна как амплитуде колебаний мембраны, так и частоте колебаний.

Катушечный микрофон [ править ]

В электродинамическом микрофоне катушечного типа диафрагма соединена с катушкой, находящейся в кольцевом зазоре магнитной системы. При колебаниях диафрагмы под действием звуковой волны витки катушки пересекают магнитные силовые линии, и в катушке наводится переменная ЭДС. Такой микрофон надёжен в эксплуатации.

Ленточный микрофон [ править ]

В электродинамическом микрофоне ленточного типа вместо катушки в магнитном поле располагается гофрированная ленточка из алюминиевой фольги. Такой микрофон применяется главным образом в студиях звукозаписи.

Конденсаторный микрофон [ править ]

Конденсаторный микрофон основан на конденсаторе, одна из обкладок которого выполнена из эластичного материала (обычно — полимерная плёнка с нанесённой металлизацией); при звуковых колебаниях вибрации эластичной обкладки изменяют ёмкость конденсатора. Если конденсатор заряжен, то изменение ёмкости конденсатора приводит к возникновению токов заряда, которые и являются полезным сигналом, поступающим с микрофона на усилитель. Для работы такого микрофона между обкладками должно быть приложено поляризующее напряжение, 60-80 вольт в более старых микрофонах, а в моделях после 1960—1970-х годов — 48 вольт. Такое напряжение питания считается стандартом, именно с таким фантомным питанием выпускаются предусилители и звуковые карты. Конденсаторный микрофон имеет очень высокое выходное сопротивление. В связи с этим, в непосредственной близости к микрофону (внутри его корпуса) располагают предусилитель с высоким (порядка 1 ГОм) входным сопротивлением, выполненный на электронной лампе или полевом транзисторе.

Конденсаторные микрофоны обладают весьма равномерной амплитудно-частотной характеристикой и обеспечивают высококачественный захват звука, в связи с чем широко используются в студиях звукозаписи, на радио и телевидении. Недостатками их являются высокая стоимость, необходимость во внешнем питании и высокая чувствительность к ударам и климатическим воздействиям — влажности воздуха и перепадам температуры, что не позволяет использовать их в полевых условиях.

Электретный микрофон [ править ]

По принципу действия электретный микрофон схож с микрофоном конденсаторного типа, однако в качестве неподвижной обкладки конденсатора и источника постоянного напряжения используется пластина из электрета. Электретные материалы являются диэлектриками и способны длительное время сохранять поляризованное состояние, создавая в окружающем пространстве квазипостоянное электрическое поле.

Угольный микрофон [ править ]

Угольный микрофон — один из первых типов микрофонов. Содержит угольный порошок, размещённый между двумя металлическими пластинами и заключённый в герметичную капсулу. Стенки капсулы или одна из металлических пластин соединяется с мембраной. При изменении давления на угольный порошок изменяется площадь контакта между отдельными зёрнышками угля, в результате чего изменяется сопротивление между металлическими пластинами. Если пропускать между пластинами постоянный ток, напряжение между пластинами будет зависеть от давления на мембрану.

Пьезомикрофон [ править ]

В основе пьезомикрофона используется пьезоэлектрический эффект. При деформации некоторых кристаллов (например, кристаллов сегнетовой соли) на их поверхности возникают электрические заряды, величина которых пропорциональна деформирующей силе. Пластинки из искусственно выращенных кристаллов служат основным рабочим элементом пьезомикрофонов.

По своим электроакустическим и эксплуатационным свойствам пьезомикрофоны не могут обеспечить требований, предъявляемых к профессиональным студийным и трансляционным микрофонам. К недостаткам пьезомикрофонов следует отнести высокое внутреннее сопротивление, имеющее емкостный характер, значительную неравномерность частотной характеристики, недостаточную эксплуатационную надежность (хрупкость, гигроскопичность) и зависимость параметров от температуры. Достоинствами пьезомикрофонов являются простота устройства, малый вес и габариты, а также небольшая стоимость.

Характеристики микрофонов [ править ]

Чувствительность [ править ]

Чувствительность микрофона определяется отношением напряжения на выходе микрофона к звуковому давлению Р, как правило, в свободном звуковом поле, то есть при отсутствии влияния отражающих поверхностей. При распространении синусоидальной звуковой волны в направлении рабочей оси микрофона, это направление называется осевой чувствительностью:

Рабочей осью микрофона является направление его преимущественного использования и обычно совпадает с осью симметрии микрофона. Если конструкция микрофона не имеет оси симметрии, то направление рабочей оси указывается в технических условиях. Чувствительность современных микрофонов составляет от 1–2 (динамические микрофоны) до 10–15 (конденсаторные микрофоны) мВ/Па. Чем больше это значение, тем выше чувствительность микрофона. Стоит заметить, что качество микрофона не определяется исключительно его чувствительностью.

Амплитудно-частотная характеристика [ править ]

Амплитудно-частотная характеристика (АЧХ) — зависимость амплитуды выходного сигнала от частоты. А также функция выражающая (описывающая) эту зависимость. А также — график этой функции. В различных областях применяются микрофоны с различными АЧХ. Для записи фортепиано или акустической гитары используются микрофоны с равномерной АЧХ на всём частотном диапазоне. У дикторских микрофонов наблюдается пик на графике АЧХ в области речевых частот.

Источник:
http://wikisound.org/%D0%9C%D0%B8%D0%BA%D1%80%D0%BE%D1%84%D0%BE%D0%BD

Как устроен микрофон

Микрофоны классифицируются по способу преобразования акустических колебаний в электрические, а также по функциональному назначению.

Микрофоны характеризуются следующими параметрами:

  1. Чувствительность микрофона — это отношение напряжения на выходе микрофона к воздействующему на него звуковому давлению при заданной частоте (как правило 1000 Гц), выраженное в милливольтах на паскаль (мВ/Па). Чем больше это значение, тем выше чувствительность микрофона.
  2. Номинальный диапазон рабочих частот — диапазон частот, в котором микрофон воспринимает акустические колебания и в котором нормируются его параметры.
  3. Неравномерность частотной характеристики — разность между максимальным и минимальным уровнем чувствительности микрофона в номинальном диапазоне частот.
  4. Модуль полного электрического сопротивления — нормированное значение выходного или внутреннего электрического сопротивления на частоте 1 кГц.
  5. Характеристика направленности — зависимость чувствительности микрофона (в свободном поле на определённой частоте) от угла между осью микрофона и направлением на источник звука.
  6. Уровень собственного шума микрофона — выраженное в децибелах отношение эффективного значения напряжения, обусловленного флуктуациями давления в окружающей среде и тепловыми шумами различных сопротивлений в электрической части микрофона, к напряжению, развиваемому микрофоном на нагрузке при воздействии на микрофон сигнала с эффективным давлением 1 Па.
  7. Динамический диапазон микрофона — это разность между самым тихим сигналом и самым громким, который микрофон может воспроизвести без искажений.

Схема, объясняющая конструктивное исполнение данного типа микрофонов изображена на рисунке 1.

Рис 1. Схема и принцип работы конденсаторного микрофона.

Выполненные из электропроводного материала мембрана и электрод разделены изолирующим кольцом и вместе представляют собой конденсатор. Жёстко натянутая мембрана под воздействием звукового давления совершает колебательные движения относительно неподвижного электрода.

При колебаниях мембраны ёмкость (а соответственно и заряд) конденсатора меняется с частотой воздействующего на мембрану звукового давления, в электрической цепи появляется переменный ток той же частоты и на нагрузочном сопротивлении возникает переменное напряжение, являющееся выходным сигналом микрофона.

Поскольку электретные микрофоны обладают высоким выходным импедансом (имеющим емкостный характер, конденсатор ёмкостью порядка десятков пФ), то для его уменьшения, как правило, в корпус микрофона встраивают истоковый повторитель на полевом n-каналыюм транзисторе с р-n переходом. Это позволяет снизить выходное сопротивление и уменьшить потери сигнала при подключении к входу усилителя сигнала микрофона.

Ввиду наличия встроенного транзистора, несмотря на отсутствие необходимости в поляризующем напряжении, такие микрофоны требуют внешний источник электропитания.

Типичная схема подключения электретного микрофона приведена на рисунке 2.

Рис 2. Типичная схема включения электретного микрофона.

Как правило, мембрана электретных микрофонов имеет большую толщину и меньшую площадь, из-за чего характеристики таких микрофонов зачастую уступают конденсаторным.

В отличие от конденсаторных, динамические микрофоны не требуют фантомного питания.

По конструктивному исполнению динамические микрофоны делятся на катушечные и ленточные.

В электродинамическом микрофоне катушечного типа мембрана механически жёстко соединена с катушкой, находящейся в кольцевом зазоре магнитной системы (аналогично динамикам). При колебаниях диафрагмы под действием звуковой волны витки катушки пересекают магнитные силовые линии, и в катушке наводится переменная ЭДС. На данный момент это один из наиболее распространнёных типов микрофонов, наряду с электретными. Конструкция микрофонов данного типа изображена на рисунке 3.

Рис 3. Конструкция динамического микрофона катушечного типа.

В электродинамическом микрофоне ленточного типа вместо катушки в магнитном поле располагается гофрированная ленточка из алюминиевой фольги. Считается, что подобная конструкция способствует более точной записи высокочастотного диапазона. Кроме того, данные микрофоны в основной своей массе имеют двусторонню диаграмму направленности (т.н. «восьмёрка»), подходящую для записи «стерео». Конструкция ленточного микрофона изображена на рисунке 4.

Читайте также  Как определить разрядность процессора – 32 или 64 в windows?

Рис 4. Конструкция микрофона ленточного типа.

Следует помнить, что в силу своей конструкции, ленточные микрофоны зачастую более требовательны к условиям хранения, а также могут иметь не высокий порог верхнего звукового давления. В некоторых случаях, например, банальное хранение на боку может привести к растяжению ленты и невозможности рабты микрофона.

Ввиду низких характеристик угольные микрофоны сейчас практически не используются. В прошлом наибольшее распространение ранее получили угольные микрофоны, представляющие из себя гермитичную капсулу, содержащую две металлические пластины и заключенный между ними угольный порошок. Стенки капсулы или одна из металлических пластин соединяется с мембраной. При изменении давления на угольный порошок изменяется площадь контакта между отдельными зёрнышками угля, и, в результате, изменяется сопротивление между металлическими пластинами. Если пропускать между пластинами постоянный ток, напряжение между пластинами будет зависеть от давления на мембрану.

Рис 5. Конструкция угольного микрофона.

Чаще всего используются отражения света лазера от того или иного рабочего тела, из-за чего подобные микрофоны иногда называют лазерными микрофонами. Существуют варианты в небольшом корпусе с жёстко закреплённой мембраной, колебаний которой регистрируются посредством фиксации отражённого под углом лазерного излучения. Вообще данный тип микрофонов достаточно специфичен и имеет свои узконаправленные сферы применения. Похожий принцип может использоваться в некоторых научных приборах, например, в сейсмографах или высокоточных датчиках расстояний. Следует понимать, что зачастую подобные приборы являются штучными образцами, требующими особых алгоритмов обработки сигнала, а также подстройки компонентов.

Одна из возможных схем работы подобного микрофона приведена на рисунке 6.

Рис 6. Возможная схема работы оптоакустического микрофона.

По характеристикам пьезоэлектрические микрофоны уступают большинству конденсаторных и электродинамических микрофонов, однако в некоторых сферах подобные микрофоны всё же применяются, например в бюджетных или устаревших гитарных звукоснимателях.

Рис 7. Конструкция пьезоэлектрического микрофона.

Существуют и другие возможные способы регистрации звуковых колебаний, специфичные для своей среды применения, однако чаще всего они являются той или иной комбинацией конструкций, описанных выше. Примером специфичных микрофонов могут служить ларингофоны или гидрофоны.

Источник:
http://chipinfo.pro/elements/acoustics/microphones.shtml

Принцип работы микрофона

Многие важнейшие изобретения человечества, создаваемые для передачи звука на расстояние, будь то радио или телефон, не могли обойтись без устройства для приема звуковых волн. Изобретение микрофона было необходимо на столько, что он изобретался одновременно в разных частях планеты. И до сих пор до конца не ясно, кого же из ученных можно назвать родоначальником устройства. Сегодня устройства используются практически во всех сферах жизни, начиная от сложных исследований космоса, заканчивая разговором не о чем двух домохозяек по телефону. При этом мало кто задумывается, как выглядит это, казалось бы, нехитрое устройство изнутри.

Принцип работы микрофона

Задача микрофона – преобразование звуковых волн в электрические импульсы. Они записываются на носители, и после этого, благодаря специальным программам, снова преобразуются в звук, давая возможность прослушать записанное. Что бы звукозапись стала возможна, применяются различные типы микрофонов. Самые простейшие их них работают по принципу барабанной перепонки. Колебания воздуха, создаваемые звуком, вызывают вибрацию тонкой пленки, установленной внутри устройства. Эта диафрагма, в свою очередь, двигает индукционную катушку, намотанную вокруг постоянного магнита, то есть находящуюся в постоянном магнитном поле.

За счет этого движения в катушке появляются электрические импульсы, которые и уходят по проводам на звукозаписывающее устройство. Длина и интенсивность импульса напрямую зависит от громкости и времени воздействия звуковых волн на мембрану.

Внимание! Существуют и гораздо более сложные виды таких устройств, для которых используются микросхемы и дополнительные источники питания. Качество звука, получаемого при использовании более совершенных технологий, во много раз превышает возможности простейших динамических микрофонов.

Конструкция микрофона

Самыми распространение и широко применяемые, работают следующим образом:

  1. Классический (динамический). Является на сегодняшний день самым доступным и, одновременно, самым простейшим по конструкции. С помощью очень тонкой (в несколько микрон)туго натянутой бумажной мембраны, он передает звуковые колебания на катушку, находящуюся в магнитном поле. За счет простоты своего устройства, такие устройства наиболее доступные по цене. Однако качество передачи сигнала довольно низкое.
  2. Конденсаторный. Это более совершенная конструкция звукопринимающего устройства. В основе ее лежит конденсатор, одна из пластин которого играет роль диафрагмы, принимая звуковые волны. Из-за колебания пластины, ёмкость конденсатора меняется, создавая импульсные токи. Для работы такого вида нужен дополнительный источник питания, например батарейка, аккумулятор или шнур для подключения в сети. Подобного типа устройства используются для профессиональной записи на студиях.
  3. Электретные. Являются одной из разновидностей конденсаторных устройств, для их функционирования на мембрану наносится специальный электретный состав, который и создает необходимое напряжение. Такой состав способен работать больше 30 лет. А строение позволяет делать его очень миниатюрным и использовать их во всевозможных гаджетах – смартфонах, планшетах, ноутбуках, умных часах.

Какие бывают микрофоны

Помимо наиболее распространенных динамических и конденсаторных микрофонов, существуют и другие виды.

За счет сложности конструкции, дороговизны производства или не достаточных качественных показателей, они менее распространены. К ним относят угольные (Микрофон Юза), оптоакустический, пьезоэлектрические и другие, в основном применяемые в очень узконаправленных научных экспериментах.
Красивая мелодия, звучащая в плеере, голос любимого человека, которого нет рядом — все это было бы невозможно без маленького помощника, умеющего создавать из звука поток электронов в проводах.

Источник:
http://setafi.com/elektronika/mikrofon/printsip-raboty-mikrofona/

Микрофон. Виды и устройство. Работа и применение. Как выбрать

Для записи звука или для его усиления, используется микрофон. Этот прибор преобразует колебания звука в электрические колебания. Он отличается устройством и внешним видом, и чтобы правильно сделать выбор, надо знать, какие есть виды этой техники, их преимущества и недостатки.

Виды

По своему назначению, микрофон может быть:
  • Сценический. Он бывает проводным или беспроводным, имеет рукоятку, которая позволяет удобно держать и фиксировать его в стоечном держателе.

  • Репортерские. Они могут быть ручными, головными или скрытыми, модели, предназначенные для использования на открытом воздухе, не боятся влаги, низкой или высокой температуры и сильного ветра.

  • Студийные. Они обычно компактных размеров и устанавливаются на петлицы, но могут быть и ручными или головными. Есть плоские модели, которые незаметны на столе и обычно устанавливаются прямо перед диктором. Вещательные микрофоны устанавливаются в специальных стойках, они могут переключаться на направленное или круговое действие.
По принципу действия, существует разделение на:
  • Динамические. Здесь звуковые волны преобразовываются в электрические сигналы при помощи маленького динамика. Они могут применяться как в репортерской деятельности, так и на сцене, не очень чувствительны к температуре, имеют высокую надежность, но качество звука хуже, чем у конденсаторных моделей.
  • Конденсаторные. Преобразование звука в электрический сигнал происходит при помощи конденсатора. Для них требуется дополнительное питание.
  • Угольные. Здесь используется угольный порошок, который во время работы изменяет свое сопротивление. Так как характеристики у них низкие, то сейчас они практически не выпускается.
  • Оптоакустические. Иногда их еще называют лазерными, так как для регистрации колебаний воздуха используется свет. Эти приборы имеют узконаправленное применение, например, в сейсмографах, датчиках расстояния и т.д.
  • Пьезоэлектрические. Они работают на основе пьезоэлектрического эффекта. Рабочим элементом являются пластины из выращенных кристаллов. У этих микрофонов характеристики хуже, чем у конденсаторных и динамических, поэтому они применяется редко.
Пространственная направленность может быть:
  • Круговая. Неважно, где находится источник звука, в этом случае техника хорошо ловит все звуки в пространстве, даже если источник движется.
  • Кардиоидный. Действие прибора направленное, при этом в одной полусфере он отлично ловит все звуки, а в другой их практически не замечает.
  • Суперкардиоидный. Поле чувствительности будет иметь вытянутую форму, поэтому микрофон воспринимает звук от конкретного источника, игнорируя шумы и другие источники звука.
  • Гиперкардиоидный. Способен воспринимать звук от далеко расположенных источников, но только в том случае, когда диафрагма микрофона будет размещена под углом 90 градусов к оси источника звука.
Особенности устройства

Угольный микрофон является самым старым и имеет простое устройство. Основными его элементами является мембрана и угольный порошок. Во время звуковых колебаний, угольный порошок меняет свое сопротивление, на выходе получается переменное напряжение, которое повторяет колебание звуковых волн.

Динамические устройства могут быть катушечного или ленточного типа. В первом случае есть мембрана, магнит и подвижная катушка. Во втором варианте мембраны нет, вместо нее есть лента из тонкого металла, во время прохождения звука она начинает вибрировать между полюсами магнита.

Конденсаторные устройства имеют строение как у конденсатора: два электрода плоской формы, один подвижный, а второй нет, между ними находится диэлектрик.

Независимо от типа прибора, у всех есть корпус, ветрозащита, шнур для подключения, а в беспроводных вариантах есть встроенный аккумулятор.

Принцип действия

Самым распространенным является динамический микрофон, он имеет высокую универсальность, надежность и доступную стоимость. Его принцип работы похож на работу обычного динамика, только в обратном направлении. Диафрагма подключается к токопроводящей катушке, которая находится в магнитном поле, сформированном постоянным магнитом.

Звук действует на диафрагму, вследствие чего начинает двигаться катушка. В магнитном поле создается вибрирующее движение, которое вызывает появление электрического тока. От силы звука, диафрагма движется сильнее или слабее, и звуковые волны преобразуются в электрические сигналы.

Читайте также  Что лучше флешка или внешний жесткий диск: выбираем накопитель

У конденсаторных, во время звуковых колебаний возникает движение одной из пластин, при этом емкость конденсатора меняется. Для ее работы обязательно необходимо питание, которое может быть от усилителя или от батареи.

Область применения

В зависимости от типа микрофона, они применяются в следующих сферах:
  • Для работы различной измерительной техники.
  • На концертах и других выступлениях.
  • В студиях звукозаписи, для записи музыкальных инструментов или вокала.
  • Для общения при помощи компьютера, например, в Skype.
  • В мобильных телефонах, видеокамерах, диктофонах и другой технике.
  • В гарнитуре, где наушники и микрофон входят в состав одного аксессуара.
Как выбрать микрофон
При выборе, надо обращать внимание на:
  • Питание. Оно может быть по кабелю или от аккумулятора, есть приборы, которые могут работать на том и другом способе питания.
  • Чувствительность. Эта характеристика показывает, какой минимальный звук может воспринять устройство. Чем ниже будет показатель в децибелах, тем чувствительнее прибор, если измерение в мВ/Па, то чем выше значение, тем лучше чувствительность.
  • Уровень звукового давления. Обычно эта характеристика в пределах 100-130 Дб, она характеризует наибольшую громкость, которую может воспринять техника.
  • Частота – диапазон звука, который сможет сформировать конкретный аппарат, например, для голоса достаточно 80-15000 Гц, а для записи такого музыкального инструмента как барабан — 30-15000Гц.
  • Сигнал/шум. Чем больше будет этот параметр, тем меньше устройство искажает звук. Среднее значение составляет 64-66 Дб, а профессиональная техника имеет 72 и больше децибел.
  • Импеданс или номинальное сопротивление. Такая характеристика описывает возможность подключения к определенному оборудованию. Этот параметр больше важен для профессиональной техники и на той, что используется с компьютером, ноутбуком или телефоном, может не указываться.
  • Радиус действия для беспроводной, и длина кабеля для проводной техники. Такая характеристика показывает, насколько свободно можно передвигаться с микрофоном. Чем больше радиус действия и длиннее кабель, тем дальше можно двигаться с этим устройством.
  • Тип подключения. Есть несколько интерфейсов: XLR, mini-XLR, mini-Jack, Jack, TA4F, USB, Lighting/30-pin. Надо смотреть, чтобы микрофон был совместим с тем устройством, к которому вы планируете его подключать.
  • Материал корпуса. Пластиковый корпус более легкий и дешевый, но менее прочный. Металлический корпус имеет высокую прочность, но и большой вес, а также у него выше стоимость.
Преимущества и недостатки
Плюсы динамических устройств:
  • Могут выдерживать большие перегрузки, поэтому используются для снятия громкого звука, при этом риск повреждения микрофона небольшой.
  • Прочная и надежная конструкция, они не боятся ударов.
  • Универсальность, можно использовать дома, на сцене или на улице.
  • Невысокая чувствительность, поэтому они не воспринимают посторонние шумы и помехи.
  • Невысокая чувствительность к обратной связи.
Среди недостатков надо отметить:
  • Чистота и прозрачность звука хуже, чем у конденсаторных устройств.
  • Небольшой частотный диапазон.
  • Могут неточно передавать тембр голоса.
Плюсы конденсаторных микрофонов:
  • Широкий частотный диапазон.
  • Есть возможность делать миниатюрные устройства.
  • Более высокое качество звука.
Их недостатки:
  • Необходимо обеспечивать дополнительное питание, обычно это 48 В, поэтому подключить прибор вне пределов студии не всегда получается.
  • Боятся ударов, после чего могут перестать работать.
  • Боятся перепадов температуры и высокой влажности.

Чтобы правильно выбрать микрофон, надо уяснить, что нет универсальных приборов, приобретать такую технику надо только под конкретные задачи. Хороший и качественный аппарат будет стоить недешево, поэтому к его выбору надо подходить подготовленным и точно знать, для каких целей он необходим.

Источник:
http://tehpribory.ru/glavnaia/elektronika/mikrofon.html

Как работает микрофон, разновидности микрофонов

Для преобразования звуковых колебаний в электрический ток применяют специальные электроакустические приборы, называемые микрофонами. Название данного прибора связано с сочетанием двух греческих слов, которые переводятся как «маленький» и «голос».

Микрофон – это преобразователь акустических колебаний в воздушной среде в электрические колебания.

Принцип действия микрофона заключается в том, что звуковые колебания (по сути — колебания давления воздуха) воздействуют на чувствительную мембрану устройства, а уже колебания мембраны вызывают генерацию колебаний электрических, поскольку именно мембрана связана с генерирующей электрический ток частью прибора, устройство которой зависит от вида конкретного микрофона.

Так или иначе, на сегодняшний день микрофоны находят самое широкое применение в различных областях науки, техники, искусства и т. д. Они используются в аудиотехнике, в мобильных гаджетах, применяются для голосовой связи, для записи голоса, в медицинской диагностике и в ультразвуковых исследованиях они служат датчиками, и во многих-многих других областях человеческой деятельности без микрофона в том или ином виде просто не обойтись.

Микрофоны имеют различные конструкции, так как у микрофонов разного вида за генерацию электрических колебаний отвечают различные физические явления, главные из которых: электрическое сопротивление, электромагнитная индукция, изменение емкости и пьезоэлектрический эффект. На сегодняшний день по принципу устройства можно выделить три основные типа микрофонов: динамический, конденсаторный и пьезоэлектрический. До сих пор кое-где встречаются, однако, и угольные микрофоны, с них и начнем наш обзор.

В 1856 году французский ученый Дю Монсель опубликовал свои исследования, в которых демонстрировалось, что даже при небольшом изменении в площади соприкосновении графитовых электродов, их сопротивление протеканию электрического тока изменяется довольно значительно.

Двадцать лет спустя, американский изобретатель Эмиль Берлинер создал на базе данного эффекта первый в мире угольный микрофон. Это произошло 4 марта 1877 года.

Работа микрофона Берлинера была основана именно на свойстве контактирующих угольных стержней изменять сопротивление цепи вследствие изменения площади проводящего контакта.

Уже в мае 1878 года развитие изобретению дал Дэвид Юз, который установил графитовый стержень с заостренными концами и с неподвижно закрепленной на нем мембраной между парой угольных чашечек.

Когда мембрана колебалась от действия не нее звука, площадь контакта стержня с чашечками также изменялась, соответственно изменялось и сопротивление электрической цепи, в которую был включен стержень. В результате ток в цепи изменялся следуя за колебаниями звука.

Томас Алва Эдисон пошел еще дальше, — он заменил стержень на угольный порошок. Автор же наиболее прижившейся конструкции угольного микрофона — Энтони Уайт (1890 год). Именно такие микрофоны до сих пор можно встретить в трубках старых аналоговых телефонных аппаратов.

Угольный микрофон устроен и работает следующим образом. Между двумя металлическими пластинами находится заключенный в герметичную капсулу угольный порошок (гранулы). Одна из пластин с одной стороны капсулы соединена с мембраной.

Когда на мембрану действует звук, она колеблется, передавая колебания угольному порошку. Частички порошка колеблются, то и дело изменяя площадь контакта друг с другом. Таким образом колеблется и электрическое сопротивление микрофона, изменяя ток в цепи, в которую он включен.

Самые первые микрофоны включали в цепь последовательно с гальванической батареей в качестве источника напряжения.

При подключении такого микрофона к первичной обмотке трансформатора, с его вторичной обмотки можно снять колеблющееся в такт действующему на мембрану звуку электрическое напряжение. Угольный микрофон отличается высокой чувствительностью, что делает в некоторых случаях возможным его применение даже без усилителя. Хотя есть у угольного микрофона и существенный недостаток — наличие значительных нелинейных искажений и шумов.

Конденсаторный микрофон (работа которого основана на принципе изменения электроемкости под действием звука) был изобретен американским инженером Эдуардом Венте в 1916 году. Способность конденсатора изменять емкость в зависимости от изменения расстояния между его обкладками была на тот момент уже хорошо известна и изучена.

Так, одна из обкладок конденсатора выступает здесь в качестве чувствительной к звуку тонкой подвижной мембраны. Мембрана получается легкой и чувствительной в силу своей тонкости, поскольку для ее изготовления традиционно используют тонкий пластик с нанесенным на него тончайшим слоем золота или никеля. Вторая обкладка конденсатора, соответственно, должна быть закреплена неподвижно.

Когда переменное звуковое давление действует на тонкую пластинку, это заставляет ее колебаться — то приближаться ко второй обкладке конденсатора, то отдаляться от нее. При этом колеблется и изменяется электрическая емкость такого своеобразного переменного конденсатора. В результате в электрической цепи, в которую включен данный конденсатор, электрический ток колеблется повторяя форму падающей на мембрану звуковой волны.

Рабочее электрическое поле между обкладками создается либо внешним источником напряжения (например батареей), либо путем изначального применения поляризованного материала в качестве покрытия одной из пластин (электретный микрофон — разновидность конденсаторного микрофона).

Здесь обязательно используется предусилитель, поскольку сигнал очень слаб, ведь изменение емкости от звука оказывается крайне мало, мембрана колеблется еле заметно. Когда схема предусилителя повышает амплитуду звукового сигнала, уже усиленный сигнал направляется затем в усилитель. Отсюда вытекает первое достоинство конденсаторных микрофонов — они сверхчувствительны даже на очень высоких частотах.

Рождение динамического микрофона явилось заслугой немецких ученых Гервина Эрлаха и Вальтера Шоттки. В 1924 году они предложили новый тип микрофона — динамический микрофон, работающий значительно качественнее угольного предшественника в плане линейности и частотных характеристик, и превосходящий конденсаторного собрата по изначальным электрическим параметрам. Они расположили в магнитном поле гофрированную ленточку из очень тонкой (около 2 мкм толщиной) алюминиевой фольги.

В 1931 году модель была усовершенствована американскими изобретателями Тёресом и Венте. Они предложили динамический микрофон с катушкой индуктивности. Данное решение по сей день считается лучшим для звукозаписывающих студий.

В основе работы динамического микрофона лежит явление электромагнитной индукции. Мембрана прикреплена к проводнику из тонкой медной проволоки, намотанному на легкую пластиковую трубочку, которая находится в зоне действия постоянного магнитного поля.

Читайте также  Как из монитора сделать телевизор без компьютера

Звуковые колебания действуют на мембрану, мембрана колеблется повторяя форму звуковой волны, при этом передает свои движения проводнику, проводник перемещается в магнитном поле, и (в соответствии с законом электромагнитной индукции) в проводнике индуцируется электрический ток, повторяющий по форме падающий на мембрану звук.

Поскольку проводник с пластиковой опорой — достаточно легкая конструкция, она получается очень подвижной и весьма чувствительной, а наводимое электромагнитной индукцией переменное напряжение — немалым.

Электродинамические микрофоны подразделяются катушечные на (оснащенные диафрагмой в кольцевом зазоре магнита), ленточные (в которых материалом для катушки служит гофрированная алюминиевая фольга), изодинамические и др.

Классический динамический микрофон надежен, отличается широким диапазоном чувствительности по амплитуде в области звуковых частот, при этом недорог в производстве. Тем не менее он недостаточно чувствителен на высоких частотах и плохо реагирует на резкие перепады звукового давления — это два его главных недостатка.

Динамический микрофон ленточной модификации отличается тем, что магнитное поле создается постоянным магнитом с полюсными наконечниками, между которыми находится тонкая алюминиевая ленточка, являющаяся заменой медной проволоке.

Ленточка обладает высокой электрической проводимостью, но индуцируемое напряжение мало, поэтому в схему обязательно добавляется повышающий трансформатор. Полезный звуковой сигнал снимается в такой схеме со вторичной обмотки трансформатора.

Ленточный динамический микрофон показывает очень равномерный частотный диапазон чувствительности в отличие от обычного динамического микрофона.

В качестве материала постоянного магнита в микрофонах используются магнитотвердые сплавы с высокой остаточной индукцией (например, NdFeB). Корпус и кольцо изготавливают из магнитомягких сплавов (например, из электротехнических сталей или пермаллоев).

Новое слово в аудиотехнике было сказано российскими учеными Ржевкиным и Яковлевым в 1925 году. Они предложили принципиально новый подход к преобразованию звука в колебания тока — пьезоэлектрический микрофон. Действию звукового давления здесь подвергается пьезоэлектрический кристалл.

Звук действует на мембрану, связанную со стержнем, который в свою очередь закреплен на пьезоэлектрике. Пьезокристалл деформируется под действием колебаний стрежня, а на его выводах появляется напряжение, повторяющее форму падающего звука. Данное напряжение используется в качестве полезного сигнала.

Источник:
http://electricalschool.info/spravochnik/eltehustr/2270-kak-rabotaet-mikrofon-raznovidnosti.html

Основы электроакустики

Устройство и принцип действия микрофонов

Свойства акустико-механической системы сильно зависят от того, воздействует ли звуковое давление на одну сторону диафрагмы (микрофон давления) или на обе стороны, а во втором случае от того, симметрично ли это воздействие (микрофон градиента давления) или на одну из сторон диафрагмы действуют колебания, непосредственно возбуждающие ее, а на вторую — прошедшие через какое-либо механическое или акустическое сопротивление или систему задержки времени (асимметричный микрофон градиента давления).Большое влияние на характеристики микрофона оказывает его механоэлектрическая часть.

Первым получил распространение угольный микрофон, который и до сих пор используют в телефонии. Действие его основывается на изменении сопротивления между зернами угольного порошка при изменении давления на их совокупность.

Угольный микрофон) работает следующим образом. При воздействии звукового давления на его диафрагму она начинает колебаться. В такт этим колебаниям изменяется и сила сжатия зерен угольного порошка , в связи с чем изменяется сопротивление между электродами , а при постоянном электрическом напряжении изменяется и ток через микрофон. Если, скажем, включить микрофон к первичной обмотке трансформатора Т, то на зажимах его вторичной обмотки будет возникать переменное напряжение, форма кривой которого будет отображать форму кривой звукового давления, воздействующего на диафрагму микрофона.
Основное преимущество угольного микрофона — высокая чувствительность, позволяющая использовать его без усилителей. Недостатки — нестабильность работы и шум из-за того, что полезный электрический сигнал вырабатывается при разрыве и восстановлении контактов между отдельными зернами порошка, большая неравномерность частотной характеристики и значительные нелинейные искажения.

После угольного микрофона появился электромагнитный микрофон, который работает следующим образом Перед полюсами (полюсными наконечниками) магнита располагают ферромагнитную диафрагму или скрепленный с ней якорь. При колебаниях диафрагмы под воздействием на нее звукового давления меняется магнитное сопротивление системы, а значит, и магнитный поток через витки обмотки, намотанной на магнитопровод этой системы. Благодаря этому на зажимах обмотки возникает переменное напряжение звуковой частоты, являющееся выходным сигналом микрофона.
Электромагнитный микрофон стабилен в работе. Однако ему свойственны узкий частотный диапазон, большая неравномерность частотной характеристики и значительные нелинейные искажения. В противоположность электромагнитному микрофону чрезвычайно широкое распространение для целей озвучения, звукоусиления получил электродинамический микрофон в своих двух модификациях — катушечной и ленточной.

Принцип действия электродинамического катушечного микрофона состоит в следующем В кольцевом зазоре магнитной системы, имеющей постоянный магнит , находится подвижная катушка , скрепленная с диафрагмой . При воздействии на последнюю звукового давления она вместе с подвижной катушкой начинает колебаться. В силу этого в витках катушки, перерезывающих магнитные силовые линии, возникает напряжение, являющееся выходным сигналом микрофона. Электродинамический микрофон стабилен, имеет довольно широкий частотный диапазон, сравнительно небольшую неравномерность частотной характеристики.

Устройство ленточного электродинамического микрофона несколько отличается от устройства катушечной модификации Здесь магнитная система микрофона состоит из постоянного магнита и полюсных наконечников , между которыми натянута легкая, обычно алюминиевая, тонкая (порядка 2 мкм) ленточка . При воздействии на обе ее стороны звукового давления возникает сила, под действием которой ленточка начинает колебаться, пересекая при этом магнитные силовые линии, вследствие чего на ее концах развивается напряжение.
Т.к. сопротивление ленточки очень мало, то для уменьшения падения напряжения на соединительных проводниках напряжение, развиваемое на концах ленточки подается на первичную обмотку повышающего трансформатора, размещенного непосредственно вблизи ленточки. Напряжение на зажимах вторичной обмотки трансформатора является выходным напряжением микрофона. Частотный диапазон этого микрофона довольно широк, а неравномерность частотной характеристики невелика.

Для электроакустических трактов высокого качества наибольшее распространение в настоящее время получил конденсаторный микрофон. Принципиально он работает следующим образомЖестко натянутая мембрана под воздействием звукового давления может колебаться относительно неподвижного электрода , являясь вместе с ним обкладками электрического конденсатора. Этот конденсатор включается в электрическую цепь последовательно с источником постоянного тока Е и активным нагрузочным сопротивлением R. При колебаниях мембраны емкость конденсатора меняется с частотой воздействующего на мембрану звукового давления, в связи с чем в электрической цепи появляется переменный ток той же частоты и на нагрузочном сопротивлении возникает падение напряжения, являющееся выходным сигналом микрофона.
Нагрузочное сопротивление должно быть большим, чтобы падение напряжения на нем не уменьшалось сильно на низких частотах, где емкостное сопротивление конденсатора очень велико и эксплуатация такого микрофона была бы невозможна из-за сравнительно небольшого сопротивления микрофонных линий и нагрузки. По этой причине почти у всех современных конденсаторных микрофонов предусмотрены конструктивно связанные с самим микрофоном усилители, имеющие малый коэффициент усиления (порядка 1), высокое входное и низкое выходное сопротивления.
Конденсаторные микрофоны имеют самые высокие качественные показатели: широкий частотный диапазон, малую неравномерность частотной характеристики, низкие нелинейные и переходные искажения, высокую чувствительность и низкий уровень шумов.

Электретные микрофоны, по существу, те же конденсаторные, но постоянное напряжение для них обеспечивается не обычным источником, а электрическим зарядом мембраны или неподвижного электрода, материалы которых отличаются тем, что способны сохранять этот заряд длительное время.

Некоторое распространение получили микрофоны пьезоэлектрические Их действие основано на том, что звуковое давление воздействует непосредственно или через диафрагму 1 и скрепленный с ней стержень 2 на пьезоэлектрический элемент 3. При деформации последнего на его обкладках вследствие пьезоэлектрического эффекта возникает напряжение, являющееся выходным сигналом микрофона.

Действие транзисторных микрофонов (весьма мало распространенных) основывается на том, что под действием звукового давления на диафрагму и скрепленное с ней острие, являющееся одновременно эмиттером полупроводникового триода, изменяется сопротивление эмиттерного перехода через него. Хотя транзисторные микрофоны с диафрагмой достаточно чувствительны, но они недостаточно стабильны и их частотные характеристики даже в сравнительно узком диапазоне частот неравномерны.

Стереофонический микрофон представляет собой систему из двух микрофонов, конструктивно размещенных в общем корпусе на одной оси друг над другом. Для записи по системе XY применяют стереофонические микрофоны, состоящие из двух одинаковых монофонических микрофонов с кардиоидными характеристиками направленности, причем акустические оси левого и правого микрофонов повернуты на 90° относительно друг друга (). При записи по системе MS один из микрофонов (микрофон середины) имеет круговую характеристику направленности, а другой (микрофон стороны) — косинусоидальную характеристику направленности

Радиомикрофон представляет собой систему, состоящую из микрофона, переносного малогабаритного передатчика и стационарного приемника. Микрофон чаще всего используют динамический катушечный или электретный. Передатчик либо совмещают в одном корпусе с микрофоном, либо выполняют карманного типа. Он излучает энергию радиочастот в УКВ диапазоне на одной из фиксированных частот. Вследствие влияния дополнительных преобразований в системе «передатчик — эфир — приемник» качественные параметры радиомикрофона уступают параметрам обычного микрофона.

Источник:
http://audioakustika.ru/node/1255