Что такое ядро процессора и многоядерность

Что такое ядро процессора и многоядерность?

Доброго времени суток. Если вас заботит производительность вашего компьютера, то необходимо знать о том, что такое ядро процессора и многоядерность. Подробное разъяснение вы получите в этой статье.

Разбор понятия

Скажу сразу, ядром называется главная вычислительная часть. Это главная часть центрального процессора, которая содержит в себе основные функциональные блоки, а именно:

  • Блок работы с прерываниями, позволяющий быстро переходить от одной задачи к другой;
  • Выборки инструкций — к нему приходят сигнал команд, и он переправляет их на обработку;
  • Декодирования — занимается упомянутым сигналом и решает, что компьютеру делать с поступившей командой и понадобятся ли для этого дополнительные инструменты;
  • Управления — поставляет декодированные инструкции другим блокам и определяет уровень нагрузки на них;
  • Выполнения и сохранения результатов — без объяснений ясно, за что они ответственны.

Другие обозначения

Говоря о физическом исполнении ядер, под ними понимаются также кристаллы CPU, зачастую открытые.

Если рассматривать ядро как набор характеристик, можно определить его как часть процесса, отвечающую за выполнение одного потока команд. Что я имею в виду? Каждый программный процесс, который совершается в компьютере, содержит в себе несколько потоков.

Можно провести аналогию с работой на стройке: несколько рабочих выполняют разные задачи (один месит раствор, другой — кладет кирпич и т. д.), но все они строят один дом и сверяются с одним и тем же чертежом. Анологичным занимается и ядро.

Многоядерность процессора

Рассмотрим сначала ЦП с одним ядром.

Как вы уже знаете, процесс разбивается на несколько потоков. Но что происходит, когда вы хотите одновременно выполнять несколько процессов, например, печатать в Microsoft Word и слушать музыку?

Компьютер умный и делает вид, что выполняет действия одновременно. На самом деле происходят быстрые переключения между одним и другим процессом. Они мгновенны, поэтому вы не сможете их заметить. Тем не менее, на это тратится время, что снижает скорость выполнения задач. Если вы захотите выполнять не 2, а 4 действия сразу? Компьютер выполнит все, что вы требуете, но медленно.

В виду того, что многие игры и программы предъявляют все более высокие требования к процессорам, их производители добавляют ядра. Таким образом, за один поток команд отвечает первое ядро, за другой — второе и т. д.; если одно выполнило свою задачу, может помочь другому. Прирост в производительности очевиден.

Первый ЦП с двумя ядрами для настольных компов выпущен в 2005 году. Это Pentium D компании Intel. В том же году ее догнал конкурент — AMD — произведя на свет двухъядерник Opteron. На данный момент существуют процы и с 4, и с 8 ядрами.

Технология

К слову, еще на производительность многоядерных процессоров влияет наличие технологии Hyper-Treading. Ее суть заключается в том, что одно физическое ядро определяется системой как два логических. Это значит, что одно ядро может обрабатывать 2 потока одновременно.

Графическое ядро

В некоторые процессоры встраивается графическое ядро, которое не следует путать с вышеописанными. Как понятно из названия, данное ядро отвечает за обработку графики. Оно выступает альтернативой дискретной видеокарте. Такое решение позволяет экономить пространство в корпусе компьютера.

Характеристики ядра

Я назову основные характеристики ядер ЦП, чтобы вы лучше понимали, что они собой представляют:

  • Архитектура — конструкция, набор свойств, присущих семейству процессоров, и соответственно ядер.

  • Набор команд — включает в себя определенный тип данных, регистров, инструкций, адресаций и т. п.
  • Объем встроенного кэша — памяти с большой скоростью доступа, которая нужна для обращений к памяти с малой (оперативной).
    Кэш ядер делится на 3 уровня (L1, L2 и L3). В характеристиках многоядерных девайсов обычно указывается L1 для одного ядра. L2 медленнее, но имеет больший объем. Если вы подбираете проц для выполнения ресурсоемких задач, ориентируйтесь на кэш второго уровня. L3 присутствует в самых производительных устройствах.
  • Число функциональных блоков.
  • Тактовая частота — количество операций, которое проц может выполнять за секунду. Исчисляется в гигагерцах.
  • Напряжение питания.
  • Тепловыделение.
  • Технологический процесс — размер, использующийся при изготовлении ЦП. Измеряется в нанометрах.
  • Площадь кристалла.

Как узнать, сколько ядер в вашем CPU?

Конечно, самый простой способ узнать число ядер своего процессора — посмотреть в его характеристиках. Но не все знают или помнят точное название устройства. Поэтому предлагаю другой вариант:

  • Пройдитесь по меню «Пуск — Все программы — Стандартные — Служебные»;
  • Или в поисковой строке на панеле задач пропишите «msinfo32».
  • Откройте «Сведения о системе»;

В поле справа отыщите строчку «Процессор», в которой будут содержаться основные данные о нем.

На этом буду заканчивать.

Подписывайтесь на обновления и не забывайте делиться полезной информацией из этого блога с друзьями.

Источник:
http://profi-user.ru/chto-takoe-yadro-processora/

Ядро процессора

Термин «ядро микропроцессора» (англ. processor core ) не имеет чёткого определения и в зависимости от контекста употребления может обозначать:

  • часть микропроцессора, содержащую основные функциональные блоки.
  • набор параметров, характеризующий микропроцессор.
  • кристалл микропроцессора (CPU или GPU), чаще всего, открытый.
  • часть процессора, осуществляющая выполнение одного потока команд. Многоядерные процессоры имеют несколько ядер и поэтому способны осуществлять независимое параллельное выполнение нескольких потоков команд одновременно.

Ядро микропроцессора обычно имеет собственное кодовое обозначение (например, Deschutes).

Характеристики ядра

Типичными характеристиками ядра являются, например:

  • микроархитектура;
  • система команд;
  • количество функциональных блоков (ALU, FPU, конвейеров и т.п.);
  • объём встроенной кэш-памяти;
  • интерфейс (логический и физический);
  • тактовые частоты;
  • напряжение питания;
  • максимальное и типичное тепловыделение;
  • технология производства;
  • площадь кристалла.

Ревизии ядра

В процессе развития ядра микропроцессора в него вносятся изменения, часто значительные. Так, например, может быть добавлен дополнительный набор инструкций, уменьшены проектные нормы техпроцесса, увеличена тактовая частота. Также обычно исправляются найденные ошибки. Такие изменения называются ревизиями ядра. Ядра различных ревизий различаются между собой по номеру ревизии (например, Athlon XP Thoroughbred ревизий A0 и B0), который может быть закодирован в маркировке микропроцессора, либо запрограммирован в ядре. В последнем случае код номера ревизии (степпинг) можно узнать с помощью инструкции

Wikimedia Foundation . 2010 .

Смотреть что такое «Ядро процессора» в других словарях:

Ядро (значения) — Ядро нечто центральное и самое важное, часто круглое. Это слово имеет различные значения в разных областях: Содержание 1 Ядерная физика 2 Биология 3 Науки о Земле 4 Спорт … Википедия

Ядро — Содержание 1 Ядерная физика 2 Биология 3 Науки о Земле … Википедия

Ядро (операционной системы) — У этого термина существуют и другие значения, см. Ядро. Ядро центральная часть операционной системы (ОС), обеспечивающая приложениям координированный доступ к ресурсам компьютера, таким как процессорное время, память и внешнее аппаратное… … Википедия

Ядро микропроцессора — Термин «ядро микропроцессора» (англ. processor core) не имеет чёткого определения и в зависимости от контекста употребления может обозначать: часть микропроцессора, содержащую основные функциональные блоки. набор параметров, характеризующих… … Википедия

Кэш процессора — Кэш микропроцессора кэш (сверхоперативная память), используемый микропроцессором компьютера для уменьшения среднего времени доступа к компьютерной памяти. Является одним из верхних уровней иерархии памяти[1] … Википедия

Разъём процессора персонального компьютера — Эту страницу предлагается переименовать в Разъём процессора. Пояснение причин и обсуждение на странице Википедия:К переименованию/19 марта 2012. Возможно, её текущее название не соответствует нормам современного русского языка и/или… … Википедия

Кэш центрального процессора — Кэш (англ. cache[1], произносится kæʃ кЭш) промежуточный буфер с быстрым доступом, содержащий копию той информации, которая хранится в памяти с менее быстрым доступом, но с наибольшей вероятностью может быть оттуда запрошена. Доступ к данным в… … Википедия

Cell — Ядро процессора Cell Cell микропроцессорная архитектура, совместно разработанная Sony, Toshiba и IBM, которые организовали альянс, известный как «STI». Разработка архитектуры и первые прототипы были созданы в STI Design Center за… … Википедия

x86 — 80486 DX2 x86 (англ. Intel 80×86) архитектура процессора c одноимённым наборо … Википедия

Athlon — > Центральный процессор … Википедия

Источник:
http://dic.academic.ru/dic.nsf/ruwiki/1219173

Что такое центральный процессор?

Наверное, каждый пользователь мало знакомый с компьютером сталкивался с кучей непонятных ему характеристик при выборе центрального процессора: техпроцесс, кэш, сокет; обращался за советом к друзьям и знакомым, компетентным в вопросе компьютерного железа. Давайте разберемся в многообразии всевозможных параметров, потому как процессор – это важнейшая часть вашего ПК, а понимание его характеристик подарит вам уверенность при покупке и дальнейшем использовании.

Центральный процессор

Процессор персонального компьютера представляет собой микросхему, которая отвечает за выполнение любых операций с данными и управляет периферийными устройствами. Он содержится в специальном кремниевом корпусе, называемом кристаллом. Для краткого обозначения используют аббревиатуру — ЦП (центральный процессор) или CPU (от англ. Central Processing Unit – центральное обрабатывающее устройство). На современном рынке компьютерных комплектующих присутствуют две конкурирующие корпорации, Intel и AMD, которые беспрестанно участвуют в гонке за производительность новых процессоров, постоянно совершенствуя технологический процесс.

Читайте также  НЕСТАНДАРТНЫЙ РЕМОНТ ПОДСВЕТКИ МОНИТОРА

Техпроцесс

Техпроцесс — это размер, используемый при производстве процессоров. Он определяет величину транзистора, единицей измерения которого является нм (нанометр). Транзисторы, в свою очередь, составляют внутреннюю основу ЦП. Суть заключается в том, что постоянное совершенствование методики изготовления позволяет уменьшать размер этих компонентов. В результате на кристалле процессора их размещается гораздо больше. Это способствует улучшению характеристик CPU, поэтому в его параметрах всегда указывают используемый техпроцесс. Например, Intel Core i5-760 выполнен по техпроцессу 45 нм, а Intel Core i5-2500K по 32 нм, исходя из этой информации, можно судить о том, насколько процессор современен и превосходит по производительности своего предшественника, но при выборе необходимо учитывать и ряд других параметров.

Архитектура

Также процессорам свойственно такая характеристика, как архитектура — набор свойств, присущий целому семейству процессоров, как правило, выпускаемому в течение многих лет. Говоря другими словами, архитектура – это их организация или внутренняя конструкция ЦП.

Количество ядер

Ядро – самый главный элемент центрального процессора. Оно представляет собой часть процессора, способное выполнять один поток команд. Ядра отличаются по размеру кэш памяти, частоте шины, технологии изготовления и т. д. Производители с каждым последующим техпроцессом присваивают им новые имена (к примеру, ядро процессора AMD – Zambezi, а Intel – Lynnfield). С развитием технологий производства процессоров появилась возможность размещать в одном корпусе более одного ядра, что значительно увеличивает производительность CPU и помогает выполнять несколько задач одновременно, а также использовать несколько ядер в работе программ. Многоядерные процессоры смогут быстрее справиться с архивацией, декодированием видео, работой современных видеоигр и т.д. Например, линейки процессоров Core 2 Duo и Core 2 Quad от Intel, в которых используются двухъядерные и четырехъядерные ЦП, соответственно. На данный момент массово доступны процессоры с 2, 3, 4 и 6 ядрами. Их большее количество используется в серверных решениях и не требуется рядовому пользователю ПК.

Помимо количества ядер на производительность влияет тактовая частота. Значение этой характеристики отражает производительность CPU в количестве тактов (операций) в секунду. Еще одной немаловажной характеристикой является частота шины (FSB – Front Side Bus) демонстрирующая скорость, с которой происходит обмен данных между процессором и периферией компьютера. Тактовая частота пропорциональна частоте шины.

Чтобы будущий процессор при апгрейде был совместим с имеющейся материнской платой, необходимо знать его сокет. Сокетом называют разъем, в который устанавливается ЦП на материнскую плату компьютера. Тип сокета характеризуется количеством ножек и производителем процессора. Различные сокеты соответствуют определенным типам CPU, таким образом, каждый разъём допускает установку процессора определённого типа. Компания Intel использует сокет LGA1156, LGA1366 и LGA1155, а AMD — AM2+ и AM3.

Кэш — объем памяти с очень большой скоростью доступа, необходимый для ускорения обращения к данным, постоянно находящимся в памяти с меньшей скоростью доступа (оперативной памяти). При выборе процессора, помните, что увеличение размера кэш-памяти положительно влияет на производительность большинства приложений. Кэш центрального процессора различается тремя уровнями (L1, L2 и L3), располагаясь непосредственно на ядре процессора. В него попадают данные из оперативной памяти для более высокой скорости обработки. Стоит также учесть, что для многоядерных CPU указывается объем кэш-памяти первого уровня для одного ядра. Кэш второго уровня выполняет аналогичные функции, отличаясь более низкой скоростью и большим объемом. Если вы предполагаете использовать процессор для ресурсоемких задач, то модель с большим объемом кэша второго уровня будет предпочтительнее, учитывая что для многоядерных процессоров указывается суммарный объем кэша L2. Кэшем L3 комплектуются самые производительные процессоры, такие как AMD Phenom, AMD Phenom II, Intel Core i3, Intel Core i5, Intel Core i7, Intel Xeon. Кэш третьего уровня наименее быстродействующий, но он может достигать 30 Мб.

Энергопотребление

Энергопотребление процессора тесно связано с технологией его производства. С уменьшением нанометров техпроцесса, увеличением количества транзисторов и повышением тактовой частоты процессоров происходит рост потребления электроэнергии CPU. Например, процессоры линейки Core i7 от Intel требуют до 130 и более ватт. Напряжение подающееся на ядро ярко характеризует энергопотребление процессора. Этот параметр особенно важен при выборе ЦП для использования в качестве мультимедиа центра. В современных моделях процессоров используются различные технологии, которые помогают бороться с излишним энергопотреблением: встраиваемые температурные датчики, системы автоматического контроля напряжения и частоты ядер процессора, энергосберегающие режимы при слабой нагрузке на ЦП.

Дополнительные возможности

Современные процессоры приобрели возможности работы в 2-х и 3-х канальных режимах с оперативной памятью, что значительно сказывается на ее производительности, а также поддерживают больший набор инструкций, поднимающий их функциональность на новый уровень. Графические процессоры обрабатывают видео своими силами, тем самым разгружая ЦП, благодаря технологии DXVA (от англ. DirectX Video Acceleration – ускорение видео компонентом DirectX). Компания Intel использует вышеупомянутую технологию Turbo Boost для динамического изменения тактовой частоты центрального процессора. Технология Speed Step управляет энергопотреблением CPU в зависимости от активности процессора, а Intel Virtualization Technology аппаратно создает виртуальную среду для использования нескольких операционных систем. Также современные процессоры могут делиться на виртуальные ядра с помощью технологии Hyper Threading. Например, двухъядерный процессор способен делить тактовую частоту одного ядра на два, что способствует высокой производительности обработки данных с помощью четырех виртуальных ядер.

Размышляя о конфигурации вашего будущего ПК, не забывайте про видеокарту и ее GPU (от англ. Graphics Processing Unit – графическое обрабатывающее устройство) – процессор вашей видеокарты, который отвечает за рендеринг (арифметические операции с геометрическими, физическими объектами и т.п.). Чем больше частота его ядра и частота памяти, тем меньше будет нагрузки на центральный процессор. Особенное внимание к графическому процессору должны проявить геймеры.

Источник:
http://mediapure.ru/matchast/chto-takoe-centralnyj-processor/

Ядра процессора, их влияния и функции в ПК

Доброго времени суток, уважаемый посетитель. Сегодня поговорим о том, что такое ядра процессора и какую функцию они выполняют. Сразу хотим сказать, что не собираемся лезть в дебри, которые не каждый техногик осилит. Все будет доступно, понятно и непринужденно, а потому тащите бутеры.

Начать хочется с того, что процессор – центральный модуль в компьютере, который отвечает за все математические вычисления, логические операции и обработку данных. Фактически вся его мощь сосредоточена, как ни странно, в ядре. Их количество определяет скорость, интенсивность и качество переработки полученной информации. А потому рассмотрим компонент более пристально.

Основные характеристики ядер ЦП

Ядро – физический элемент процессора (не путать с логическими ядрами – потоками), который влияет на производительность системы в целом.

Каждое изделие построено на определенной архитектуре, что говорит об определенном наборе свойств и возможностей, присущих линейке выпускаемых чипов.

Основная отличительная особенность – техпроцесс, т.е. размер транзисторов, используемых в производстве чипа. Показатель измеряется в нанометрах. Именно транзисторы являются базой для ЦП: чем больше их размещено на кремниевой подложке – тем мощнее конкретный экземпляр чипа.

Возьмем к примеру 2 модели устройств от Intel – Core i7 2600k и Core i7 7700k. Оба имеют 4 ядра в процессоре, однако техпроцесс существенно отличается: 32 нм против 14 нм соответственно при одинаковой площади кристалла. На что это влияет? У последнего можно наблюдать такие показатели:

  • базовая частота – выше;
  • тепловыделение – ниже;
  • набор исполняемых инструкций – шире;
  • максимальная пропускная способность памяти – больше;
  • поддержка большего числа функций.

Иными словами, снижение техпроцесса = рост производительности. Это аксиома.

Функции ядер

Центральное ядро процессора выполняет 2 основных типа задач:

В первую категорию стоит отнести задачи по организации вычислений, загрузке интернет-страниц и обработке прерываний.

Во вторую же попадают функции поддержки приложений путем использования программной среды. Собственно, прикладное программирование как раз и построено на том, чтобы нагрузить ЦП задачами, которые он будет выполнять. Цель разработчика – настроить приоритеты выполнения той или иной процедуры.

Современные ОС позволяют грамотно задействовать все ядра процессора, что дает максимальную продуктивность системы. Из этого стоит отметить банальный, но логичный факт: чем больше физических ядер на процессоре, тем быстрее и стабильней будет работать ваш ПК.

Как включить все ядра в работу

Некоторые пользователи в погоне за максимальной производительностью хотят задействовать всю вычислительную мощь ЦП. Для этого существует несколько способов, которые можно использовать по отдельности, или объединить несколько пунктов:

  • разблокировка скрытых и незадействованных ядер (подходит далеко не для всех процессоров – необходимо подробно изучать инструкцию в интернете и проверять свою модель);
  • активация режима Turbo Boost для повышения частоты на краткосрочный период;
  • ручной разгон процессора.
Читайте также  Монитор не показывает изображение, а компьютер работает

Самый простой метод запустить сразу все активные ядра, выглядит следующим образом:

  • открываете меню «Пуск» соответствующей кнопкой;
  • прописываете в строке поиска команду «msconfig.exe» (только без кавычек);
  • находите сверху вкладку «Загрузка»;
  • открываете пункт «дополнительные параметры» и задаете необходимые значения в графе «число процессоров», предварительно активировав флажок напротив строки.

Как в Windows 10 включить все ядра?

Теперь при запуске ОС Windows будут работать сразу все вычислительные физические ядра (не путать с потоками).

Обладателям старых процессоров AMD

Следующая информация будет полезна обладателям старых процессоров AMD. Если вы до сих пользуетесь следующими чипами, то будете приятно удивлены:Технология разблокировки дополнительных ядер называется ACC (Advanced Clock Calibration). Она поддерживается в следующих чипсетах:Утилита, позволяющая раскрыть дополнительные ядра у каждого производителя называется по-разному:Таким несложным способом можно превратить 2‑ядерную систему в 4‑ядерную. Большинство из вас даже не догадывались о подобном, верно? Будем надеяться, что я вам помог бесплатно добиться повышения производительности.

В данной статье я попытался вам максимально подробно объяснить, что такое ядро, из чего оно состоит, какие функции выполняет и каким потенциалом обладает.

В следующих ликбезах вас ждет еще много интересного, а потому не пропускайте новый материал. Пока, пока.

Источник:
http://infotechnica.ru/pro-kompyuteryi/o-protsessorah/yadra-ih-vliyaniya-i-funktsii/

Что такое ядра процессора, как их выбрать для разных задач и на что они влияют

Вы когда-нибудь задумывались о том, как построены современные процессоры, что такое ядра и на что они влияют? Почему процессор может выполнять сразу несколько операций, что такое многопоточность и как это все работает? Как ЦП позволяет обрабатывать компьютеру одновременно большое количество данных. Итак, давайте разбираться в архитектуре данного устройства.

Общее понятие архитектуры процессора ПК

Под понятием архитектуры процессора подразумеваются важные с точки зрения построения и функциональности особенности чипа, которые связаны как с его программной моделью, так и с физической конструкцией.

Архитектура набора команд (ISA) – это набор инструкций процессора и других его функций (например, система и нумерация регистров или режимы адресации памяти), имеющих программную часть ядра, которые не зависят от внутренней реализации.

В свою очередь, физическое построение системы называется микроархитектурой (uarch). Это детальная реализация программной модели, которая связана с фактическим выполнением операций. Микроархитектура представляет собой конфигурацию, определяющую отдельные элементы, например, логические блоки, а также связи между ними.

Стоит отметить, что ЦП, выполняющие одинаковую программную модель, могут значительно отличаться друг от друга микроархитектурой – например, устройства от фирм AMD и Intel. Современные чипы имеют идентичную программную архитектуру x86, но абсолютно разную микроархитектуру.

Роль количества ядер, их влияние на производительность

Первоначально ЦП имели только одно ядро. Однако на рубеже XX и XXI веков инженеры пришли к выводу, что стоит увеличить их количество. Это должно было позволить получить более высокую вычислительную мощность, а также позволить обрабатывать несколько задач одновременно.

Но для начала стоит разобраться с главным мифом. Принято считать, что чем больше ядер у процессора, тем больше мощности он будет предлагать. Но на практике все не так просто. Реальное влияние на производительность оказывают и другие факторы – например, тактовая частота, объем кэша, архитектура, количество потоков.

Например, если первый ЦП имеет 2 ядра 4 потока, а второй 4 ядра 4 потока, то разница в производительности будет небольшая. Однако если сравнить первый чип с 4-ядерным 8-поточным, то в данном случае производительность возрастет на 50 %.

Что такое потоки и на что влияет их количество

Потоки – это виртуальный компонент или код, который разделяет физическое ядро процессора на несколько ядер. Одно ядро имеет до 2 потоков.

Например, если процессор двухъядерный, то он будет иметь 4 потока, а если восьмиядерный – 16 потоков.

Поток создается активным процессом. Каждый раз, когда открывается приложение, оно само создает поток, который будет обрабатывать задачи этого конкретного приложения. Поэтому, чем больше приложений будет открыто, тем больше потоков будет создано.

Потоки создаются операционной системой для выполнения задачи конкретного приложения. Они управляются планировщиком, который является стандартной частью каждой ОС.

Существует один поток (код того ядра, выполняющий вычисления, также известный как основной поток) на ядре, который, когда получает информацию от пользователя, создает другой поток и выделяет ему задачу. Аналогично, если он получает другую инструкцию, он формирует второй поток и выделяет ему задачу, создавая таким образом многопоточность.

Потоки стали жизненно важной частью вычислительной мощности, поскольку они позволяют выполнять несколько задач одновременно. Это повышает производительность компьютера, а также позволяет сделать его способным к многозадачности. Благодаря этой технологии становится возможно просматривать веб-страницы, слушать музыку и скачивать файлы в фоновом режиме одновременно.

Рекомендации по выбору процессора

При выборе ЦП некоторые характеристики будут важнее других – это зависит от предпочтений пользователя.

Для большинства офисных компьютеров подойдут двух- или четырехъядерные процессоры. Однако если вычислительные потребности более интенсивны, например, при программировании и графическом дизайне, для начала стоит выяснить, сколько ядер потребуется для используемого программного обеспечения.

Частота является еще одним фактором, который следует принимать во внимание. Хотя частота – это не единственное, что определяет скорость, она оказывает существенное влияние. Используемое программное обеспечение будет влиять на скорость. Например, при регулярном использовании Adobe CS 6, лучше всего подойдет процессор со скоростью не менее 2 ГГц.

Для инженерных задач

Как правило, компьютеры для инженерных задач обязаны обрабатывать много информации за короткий промежуток времени.

При покупке ЦП для такого компьютера важен многоядерный процессор. В идеале нужно искать такой чип, который предлагает гиперпоточность. Это обеспечит большую вычислительную мощность.

Для работы с графикой

При работе с графикой требования к процессору отличаются. Для обработки 2D графики – подойдут бюджетные варианты, 2 или 4 ядра с тактовой частотой 2,4 ГГц вполне справятся с задачей.

Для работы с 3D графикой лучше всего выбирать 4 или 6-ядерные чипы, с тактовой частотой 3 ГГц и выше, а также с поддержкой многопоточности.

Для игрового ПК

Потребности геймеров специфичны, когда дело доходит до вычислительной мощности компьютера.

Первое, что нужно учитывать – это количество ядер. В дополнение к числу ядер, геймерам также важно учитывать тактовую частоту. Для современных игр потребуется частота 3,8 ГГц или выше.

Еще стоит обратить внимание на тепловыделение. Нынешние игры довольно требовательные, поэтому процессор быстро нагревается. У системного блока должна быть качественная система охлаждения, которая поможет адекватно удовлетворить потребности устройства, чтобы компоненты не перегревались.

Для стриминга

Выбор ЦП для стриминга зависит от сборки самого ПК.

Для профессионального стриминга понадобится ЦП с 6, 8, 16 ядрами и тактовой частотой 4 ГГц и выше. Тут выбор будет завесить от купленной видеокарты и нужного разрешения для стрима.

Источник:
http://it-tehnik.ru/hardware/yadra-protsessora.html

Руководство: сколько ядер нужно процессору в вашем компьютере

Современные процессоры для ПК и ноутбуков имеют как минимум два ядра — одноядерные чипы выпускаются разве что для сверхкомпактных компьютеров, которые управляют всевозможной электроникой и не нуждаются даже в сравнтельно небольшой вычислительной мощности. Какой же процессор выбрать для офисного или домашнего ПК? Сколько ядер хватит для выполнения повседневных задач без заметных замедлений? Что такое Hyper Threading и bottlenecking? Постараемся ответить на все эти вопросы в нашей статье.

Краткие ответы и советы

Если вы подбираете процессор для компьютера, который будет выполнять обычную офисную работу, серфить в интернете и воспроизводить видео, хватит четырехъядерного чипа. Даже самые скромные Intel Core i3 и Ryzen 3 последних поколений — четырехъядерные. Конечно, можно выбрать совсем уж бюджетный Celeron или Athlon — в рамках этих линеек до сих выпускают сверхдешевые CPU, которые подойдут для ПК, исполняющего роль «печатной машинки». Но лучше все-таки обратить внимание на четырехъядерные варианты — с ними точно не будет никаких проблем.

Для домашнего ПК, который используется в том числе и для игр, оптимальный вариант в 2019 году — это шестиядерный процессор. Да, многие четырехъядерные CPU (особенно Core i5 и Core i7 с поддержкой Hyper Threading, о которой поговорим чуть дальше) вполне справятся с большинством современных игр благодаря достаточно высокой тактовой частоте, но лучше сделать хоть какой-то задел на будущее. Ну а восемь ядер — это и вовсе идеальный вариант, который позволит не беспокоиться о замене процессора (и материнской платы — это немаловажно!) еще несколько лет.

Читайте также  Как подключить монитор к планшету? Инструкция

Рабочие станции, которые выполняют серьезные вычисления (3D-рендеринг, нейросети, кодирование видео, математика, профессиональная работа с фотографиями и так далее), обычно оснащаются так называемыми HEDT-процессорами (High-end Desktop). Каждое их ядро не так быстро, как ядра топовых процессоров для игровых ПК, но этих ядер обычно больше. Благодаря тому, что практически все профессиональные пакеты ПО отлично справляются с задачей распределения вычислений на процессоре с большим количеством ядер, итоговая производительность в этом случае выше.

В любом случае, при выборе конкретной модели нужно опираться не только на количество ее ядер, но и на результаты независимых тестов производительности — именно в тех задачах, в которых вы будете задействовать свой ПК.

Отдельно нужно рассказать о ноутбуках. Из-за ограничений, которые накладывают компактные корпусы, охладить компоненты которых далеко не так просто, как в полноценных корпусах настольных ПК, их процессоры заметно слабее и часто используют меньше ядер. Двухъядерные Core i3 в бюджетных рабочих лаптопах — это вполне нормально. Впрочем, в этом году в продаже начали появляться очень привлекательные модели с Ryzen, у которых довольно производительных ядер уже как минимум четыре.

Что такое ядро процессора?

Если не вдаваться в технические подробности, то количество ядер процессора означает то, сколько задач он может выполнять одновременно. Одноядерный процессоры, которые использовались много лет назад, для работы с несколькими программами очень быстро переключались между ними, что приводило к серьезным замедлениям.

В 2005 году все изменилось — именно тогда в продаже появились первые двухъядерные CPU AMD Athlon 64 x2 и Intel Pentium D. На протяжении следующих десяти лет эти компании начали выпускать четырех-, шести- и даже восьмиядерные модели. Не так давно AMD представила 24-ядерный Threadripper 3970X, предназначенный для серверов и высокопроизводительных рабочих станций, а в 2020 и вовсе собирается выпустить 64-ядерный CPU — Threadripper 3990WX.

Кстати, в сфере специализированных серверных процессоров уже есть и еще более впечатляющие экземпляры, чем 3970X — например, 32-ядерные AMD Epyc. Впрочем, устанавливать их в обычные ПК никакого смысла нет.

Что ж, прямая зависимость скорости работы профессионального ПО от количества ядер процессора очевидна. А что насчет игр?

Производительность одного и нескольких ядер в играх

Когда самыми распространенными были одноядерные процессоры, игры разрабатывались именно для них — они никак не использовали мощь дополнительных ядер, и покупать многоядерные CPU ради увеличения производительности было незачем. Но эти времена давно в прошлом.

Взрывная популярность двух- и четырехъядерных процессоров позволила разработчикам игр эффективно разделить вычислительные процессы и добиться куда более интересных результатов, чем раньше. Стоит отметить, что очень важную роль в этом процессе сыграли консоли — в 2013 Microsoft и Sony выпустили Xbox One и PlayStation 4, которые используют восьмиядерные чипсеты AMD. Вскоре после этого четырехъядерные процессоры стали «золотым стандартом» на ПК, а топовые восьмиядерные — идеальным выбором геймеров.

Впрочем, мощность каждого из ядер до сих пор остается более важной, чем их количество. Достаточно взглянуть на результаты внутриигровых тестов флагманских Intel Core i9-9900K и AMD Ryzen 9 3950X — хоть у последнего и вдвое больше ядер, первый немного выигрывает за счет их прозводительности.

Таким образом, если вы хотите любой ценой получить самый мощный игровой ПК, в данный момент лучшим выбором является платформа Intel. С другой стороны, AMD предлагает куда более сбалансированные процессоры, которые отлично себя показывают во всех задачах (в играх они уступают совсем немного) и стоят заметно дешевле.

Если же вы хотите собрать не слишком дорогой компьютер, то стоит обратить внимание на шестиядерные CPU — например, Intel Core i5-9600K и AMD Ryzen 5 3600X.

Ну и, конечно, не стоит думать, что четырехъядерные процессоры совсем для игр не годятся — это вполне себе бюджетный вариант, который прослужит еще пару лет. Но и только — не стоит ждать от них хорошей производительности в играх, которые будут выпускать для консолей следующего поколения.

Если же говорить о CPU с восемью ядрами и более, они используются в дорогих ПК, но только в связке с достаточно мощной видеокартой. Нет никакого смысла в сочетании i9-9900K и GeForce GTX 1660 — для него понадобится что-то уровня хотя бы RTX 2070.

Отдельно нужно сказать о стриминге и записи видео во время игр. Если вы хотите заниматься этими вещами и стать новым Shroud или хотя бы Lirik, то в идеале вам понадобится отдельный ПК с мощным восьмиядерным CPU для кодирования видео в реальном времени. Если возможности купить второй дорогой компьютер нет, нужно выбирать CPU с восемью или более ядрами для первого — ему придется одновременно работать и с игрой, и с программой для стриминга / записи, а это необыкновенно сложная комбинация (впрочем, многое зависит от выбранной игры — если она совсем не «прожорлива» по отношению к CPU, может хватить и четырех ядер).

Физические и логические ядра CPU

Стоит поговорить о важном различии между физическими и логическими ядрами. Технологии Intel Hyper-threading и AMD Simultaneous Multithreading позволяют каждому ядру современных процессоров (по крайней мере, более-менее дорогих) одновременно работать с двумя потоками данных. Таким образом, поддержка HT и SMT означает удваивание количества ядер — например, с четырех физических до восьми логических.

Пригодится ли эта функция в играх и «тяжелом» ПО? Ответ однозначен: еще как!

SMT поддерживается большей частью процессоров, которые выпускает AMD — даже недорогими Ryzen 5. В случае с Intel поддержка HT есть только у топовых Core i7 и Core i9.

В 3D-ренедринге, кодировании видео, обработке задач, связанных с нейросетями и так далее дополнительные вычислительные потоки выгодны всегда. В играх они тоже практически всегда дают прирост производительности, но его далеко не во всех случаях можно назвать существенным — все опять-таки зависит от разработчиков и их способностей к оптимизации.

Bottlenecking — «узкое место»

Это очень важный термин, который нужно понимать, если вы хотите собрать сбалансированный ПК для игр. Если говорить кратко, то при неправильном подборе компонентов (в частности, процессора и видеокарты) один из них при полной загрузке будет работать «впустую» — другие просто не будут справляться с потоком готовых данных, которые он посылает дял дальнейшей обработки.

В качестве примера можно привести уже упомянутую выше воображаемую систему с CPU Core i9-9900K и GPU GeForce GTX 1660. Первый будет регулярно «простаивать» из-за того, что GTX 1660 — это среднебюджетная модель, предназначенная для недорогих компьютеров. Таким образом, в этом случае тратить лишние деньги на Core i9 было незачем (отметим, однако, что в большинстве случаев это касается только игр).

Точный совет тут дать сложно, но старайтесь подбирать к бюджетным процессорам бюджетные видеокарты, а к дорогим — дорогие. Скажем, AMD Ryzen 3 и Intel Core i3 хорошо покажут себя в GPU вроде AMD Radeon RX 570 или Nvidia GeForce GTX 1650, Ryzen 5 и Core i5 — с Radeon RX 5700 и RTX 2060, Ryzen 7 и Core i7 — с RTX 2080, а Ryzen 9 и Core i9 — с RTX 2080 Ti, Titan или даже двумя мощными GPU одновременно.

Заключение

Итак, простой и быстрый ответ на вопрос, заданный в заголовке статьи, дать можно, но лучше разобраться в вопросе более внимательно.

Еще несколько лет назад двухъядерные процессоры можно было назвать удовлетворительными, но к 2019 они остались уделом сверхбюджетных офисных ПК. Совсем скоро в таком же положении окажутся четырехъядерные модели без поддержки Hyper-threading и Simultaneous Multithreading.

Если вам нужен недорогой компьютер для обычной офисной работы или игр, выбирайте четыреъядерные CPU. Если хотите оптимальную производительность в играх, остановитесь на какой-нибудь из шестиядерных моделей. Если же нужна высокая производительность (что в играх, что в «тяжелых» пакетах ПО для серьезной работы со сложными вычислениями), покупайте процессор с восемью ядрами или более.

Источник:
http://review.1k.by/pc/Rykovodstvo_skolko_yader_nyjno_protsessory_v_vashem_kompiytere-1135.html