Магистрально-модульный принцип построения компью­тера

Магистрально-модульный принцип построения компью­тера

В основу архитектуры современных персональных компьютеров положен магистрально-модульный принцип. Модульный принцип позволяет потребителю самому комплектовать нужную ему конфигурацию компьютера и производить при необходимости ее модернизацию. Модульная организация компьютера опирается на магистральный (шинный) прин­цип обмена информацией между устройствами.

Магистраль (системная шина) включает в себя три много­разрядные шины, которые представляют собой многопроводные линии (рис. 2.4.) :

Шина данных. По этой шине данные передаются между различными устройствами. Например, считанные из опера­тивной памяти данные могут быть переданы процессору для обработки, а затем полученные данные могут быть отправле­ны обратно в оперативную память для хранения. Таким об­разом, данные но шине данных могут передаваться от устройства к устройству в любом направлении.

Разрядность шины данных определяется разрядностью процессора, то есть количеством двоичных разрядов, кото­рые могут обрабатываться или передаваться процессором од­новременно. Разрядностьпроцессоров постоянно увеличива­ется по мере развитиякомпьютерной техники.

Шина адреса. Выбор устройства или ячейки памяти, куда пересылаются или откуда считываются данные по шине данных, производит процессор. Каждое устройство или ячейка оперативной памяти имеет свой адрес. Адрес переда­ется по адресной шине, причем сигналы по ней передаются в одном направлении — от процессора к оперативной памяти и устройствам (однонаправленная шина). Разрядность шины адреса определяет объем адресуемой памяти (адресное пространство), то есть количество однобай­товых ячеек оперативной памяти, которые могут иметь уни­кальные адреса. Количество адресуемых ячеек памяти мож­но рассчитать по формуле:

N = 2 1 , где / — разрядность шины адреса.

Разрядность шины адреса постоянно увеличивалась и в современных персональных компьютерах составляет 36 бит. Таким образом, максимально возможное количество адресу­емых ячеек памяти равно:

N = 2 36 = 68 719 476 736.

Шина управления. По шине управления передаются сиг­налы, определяющие характер обмена информацией по ма­гистрали. Сигналы управления показывают, какую опера­цию — считывание или запись информации из памяти — нужно производить, синхронизируют обмен информацией между устройствами и так далее.

К магистрали, которая представляет собой три различ­ные шины, подключаются процессор и оперативная память, а также периферийные устройства ввода, вывода и хранения информации, которые обмениваются информацией в форме последовательностей нулей и единиц, реализованных элек­трическими импульсами. Многие необходимые дополнительные устройства интег­рированы в современные материнские (системные) платы: сетевая карта, внутренний модем, сетевой адаптер беспро­водной связи Wi-Fi, контроллер IEEE 1394 для подключе­ния цифровой видеокамеры, звуковая плата и др. Раньше эти устройства подключались к материнской плате с помо­щью слотов расширения и разъемов.

Принтер, т.е. печатающее устройство предназначен для вывода информации на бумагу. Как правило, применяются принтеры трех типов.

Матричные принтеры(Рис.18). Главная деталь таких принтеров — печатающая головка с тонки­ми иголочками (рис. 19). Каждую иголочку выдвигает вперед свой электромагнит, когда по его катушке проходит импульс тока. В головке расположены вер­тикально 9 иголочек одна над другой. Выдвигаясь, иголочки ударяют по красящей ленте и оставляют на бумаге точку. При печати головка мелкими шажками движется слева направо, после каждого шага печатая очередную колонку точек.

Отличие от обычного ксерокопировального аппарата состоит в том, что печатающий барабан электризуется с помощью лазера по командам компьютера (рис.22).

Достоинство лазерных принтеров- высокие скорости печати (до 10 и более страниц в минуту) и разрешающая способность.

Звуковая карта. Производит преобразова­ние звука из аналоговой формы в цифровую. Для ввода зву­ковой информации используется микрофон, который под­ключается к входу звуковой карты. Звуковая карта имеет также возможность синтезировать звук (в ее памяти хранят­ся звуки различных музыкальных инструментов, которые она может воспроизводить).

Многие звуковые платы имеют специальный игровой порт (GAME-порт), к которому подключаются игровые ма­нипуляторы (джойстики), которые предназначены для более удобного управления ходом компьютерных игр.

Источник:
http://studopedia.ru/2_33908_magistralno-modulniy-printsip-postroeniya-kompyutera.html

Магистрально-модульный принцип архитектуры компьютера

Магистрально-модульный принцип архитектуры компьютера — это возможность для пользователя самостоятельно выбирать комплектацию компьютера и впоследствии её модернизировать.

Магистрально-модульный принцип

В основе архитектурного построения сегодняшних электронных вычислительных машин положены магистрально-модульные принципы. Модульность конструкции даёт возможность пользователям самим определять комплектацию и, как следствие, конфигурацию своих компьютеров, а в дальнейшем и модернизировать их, по мере необходимости.

Главной опорой модульности можно считать магистральную методику передачи информационных данных между модулями и устройствами. Магистраль, она же системная шина, состоит из трёх многоразрядных шин:

  1. Шина данных.
  2. Шина адреса.
  3. Шина управления.

По шине данных выполняется обмен данным между модулями. К примеру, осуществляется выборка данных из оперативной памяти и передача их процессору, который их обрабатывает и направляет обратно в оперативную память или на модули вывода. Возможна передача данных между модулями в разных направлениях. Число разрядов шины данных равно разрядности процессора, то есть числу двоичных разрядов, обрабатываемых процессором за один тактовый период.

Готовые работы на аналогичную тему

Шина адреса служит для определения процессором модуля или ячейки памяти, с которой будет выполняться обмен информационными данным. Всем модулям и ячейкам памяти присвоены свои оригинальные адреса. Код адреса пересылается по шине адреса, при этом посылаются эти коды только в направлении от процессора к другим устройствам. Число разрядов адресной шины определяет формат адресного пространства процессора. При 32-х разрядном процессоре его адресное пространство составит четыре Гбайта.

Шина управления служит для передачи управляющих сигналов, определяющих какой тип операции следует исполнить (запись или считывание данных, синхронизацию обмена и так далее).

Компоненты компьютера

Процессор является основным вычислительным компонентом. Главным его параметром является тактовая частота, то есть число выполняемых операций за одну секунду. Для сегодняшних компьютерных процессоров она измеряется в гигагерцах (ГГц). Важным параметром является также производительность процессора, которая зависит от нескольких характеристик, таких как тактовая частота, разрядность и архитектурное построение процессора. Производительность можно определить при тестировании компьютера по быстроте выполнения некоторых операций.

Задай вопрос специалистам и получи
ответ уже через 15 минут!

Оперативная память является составной частью электронной памяти. Существуют несколько типов электронной памяти, которые используется почти в любой вычислительной системе:

  1. Оперативная или основная память (Main Memory). Этот тип памяти применяется для информационных обменов процессора с внешней памятью (например, ПЗУ) и устройствами ввода-вывода. Данный вид памяти обозначается как RAM ((Random Access Memory, что в переводе означает память с возможностью произвольной выборки). В России эту память принято называть ОЗУ (оперативное запоминающее устройство).
  2. Память КЭШ (Cache Memory) или сверхоперативная память (СОЗУ). Она выступает как буфер обмена между центральным процессором и оперативной памятью. КЭШ-память сохраняет скопированные массивы данных тех адресов оперативной памяти, с которыми происходил последний обмен, и есть вероятность, что следующий обмен данными с этой же областью адресов будет выполнен более быстро.
  3. Полупостоянная память. Этот тип памяти применяется для запоминания информационных данных о структуре вычислительной системы, и, кроме того, сохранения времени и даты системы. Для гарантированного сохранения информации применяется питание от аккумулятора.

Системный блок является основной частью компьютера к которой подсоединяются все другие модули и устройства (периферийные или внешние устройства). В состав системного блока входят все главные электронные элементы компьютера.

Читайте также  Как открыть дисковод на компьютере

Персональный компьютер выполняется на базе сверхбольших интегральных микросхем, и практически все они располагаются в системном блоке на отдельных платах. Главной платой системного блока можно считать системную или материнскую плату. На ней расположены центральный процессор, сопроцессор, оперативная память и ряд разъёмов для установки контроллеров внешних устройств или соединения с ними. То есть она представляет собой комплект разных модулей, которые обеспечивают функционирование компьютера.

Блок питания обеспечивает преобразование переменного напряжения электрической сети в несколько постоянных напряжений разной величины и полярности, которые необходимы для работы материнской платы и остальных устройств внутри системного блока. Для охлаждения компонентов системного блока и исключения перегрева, используется регулируемый вентилятор.

Системная шина или магистраль, находящаяся в системном блоке, представляет собой набор электрических соединений для связи процессора с памятью и внешними устройствами.

Клавиатура компьютера предназначается для ввода информационных данных в память компьютера посредством нажатия пользователем нужных клавиш. Обычная клавиатура, как правило, состоит из ста клавиш.

Мышь манипуляторного типа представляет собой устройство, позволяющее синхронизировать движение корпуса мыши по плоскости (коврику) с движением указателя на экране дисплея. Ввод данных выполняется расположением курсора в нужной экранной позиции и нажатием одной из клавиш на корпусе мыши.

Под монитором понимается устройство, которое обеспечивает диалог пользователя с компьютером посредством отображения на экране дисплея информационных данных в виде символов или графики. Графический режим дисплея представляет собой набор точек (пикселей), которые получаются при разбиении экранной поверхности на строки и столбцы. Число экранных пикселей принято называть разрешением дисплея в текущем режиме работы.

Так и не нашли ответ
на свой вопрос?

Просто напиши с чем тебе
нужна помощь

Источник:
http://spravochnick.ru/informacionnye_tehnologii/arhitektura_kompyutera_struktura/magistralno-modulnyy_princip_arhitektury_kompyutera/

Магистрально-модульный принцип построения ПК

На прошлых уроках вы познакомились с назначением и характеристиками основных устройств компьютера. Очевидно, что все эти устройства не могут работать по отдельности, а только в составе всего компьютера. Поэтому для понимания того, как компьютер обрабатывает информацию, необходимо рассмотреть структуру компьютера и основные принципы взаимодействия его устройств.

В соответствии с назначением компьютера как инструмента для обработки информации взаимодействие входящих в него устройств должно быть организованно таким образом, чтобы обеспечить основные этапы обработки информации. (Какие?) Схему устройства компьютера мы рассмотрели на 5 уроке. (Вспоминаем.)

Информация, представленная в цифровой форме и обрабатываемая на компьютере, называется данными.

Последовательность команд, которую выполняет компьютер в процессе обработки данных, называется программой.

Обработка данных на компьютере:

1. Пользователь запускает программу, хранящуюся в долговременной памяти, она загружается в оперативную и начинает выполняться.

2. Выполнение: процессор считывает команды и выполняет их. Необходимые данные загружаются в оперативную память из долговременной памяти или вводятся с помощью устройств ввода.

3. Выходные (полученные) данные записываются процессором в оперативную или долговременную память, а также предоставляются пользователю с помощью устройств вывода информации.

Для обеспечения информационного обмена между различными устройствами должна быть предусмотрена какая-то магистраль для перемещения потоков информации.

Магистраль (системная шина) включает в себя три многоразрядные шины: шину данных, шину адреса и шину управления, которые представляют собой многопроводные линии. К магистрали подключаются процессор и оперативная память, а также периферийные устройства ввода, вывода и хранения информации, которые обмениваются информацией на машинном языке (последовательностями нулей и единиц в форме электрических импульсов).

Шина данных. По этой шине данные передаются между различными устройствами. Например, считанные из оперативной памяти данные могут быть переданы процессору для обработки, а затем полученные данные могут быть отправлены обратно в оперативную память для хранения. Таким образом, данные по шине данных могут передаваться от устройства к устройству в любом направлении.

Разрядность шины данных определяется разрядностью процессора, то есть количеством двоичных разрядов, которые могут обрабатываться или передаваться процессором одновременно. Разрядность процессоров постоянно увеличивается по мере развития компьютерной техники.

Шина адреса. Выбор устройства или ячейки памяти, куда пересылаются или откуда считываются данные по шине данных, производит процессор. Каждое устройство или ячейка оперативной памяти имеет свой адрес. Адрес передается по адресной шине, причем сигналы по ней передаются в одном направлении — от процессора к оперативной памяти и устройствам (однонаправленная шина).

Разрядность шины адреса определяет объем адресуемой памяти (адресное пространство), то есть количество однобайтовых ячеек оперативной памяти, которые могут иметь уникальные адреса.

Шина управления. По шине управления передаются сигналы, определяющие характер обмена информацией по магистрали. Сигналы управления показывают, какую операцию — считывание или запись информации из памяти — нужно производить, синхронизируют обмен информацией между устройствами и так далее.

Модульный принцип позволяет потребителю самому комплектовать нужную ему конфигурацию компьютера и производить при необходимости ее модернизацию. Каждая отдельная функция компьютера реализуется одним или несколькими модулями – конструктивно и функционально законченных электронных блоков в стандартном исполнении. Организация структуры компьютера на модульной основе аналогична строительству блочного дома. Основными модулями компьютера являются память и процессор. Процессор – это устройство управляющее работой всех блоков компьютера. Действия процессора определяются командами программы, хранящейся в памяти.

Модульная организация опирается на магистральный (шинный) принцип обмена информацией между устройствами.

Магистрально-модульный принцип имеет ряд достоинств:

1. для работы с внешними устройствами используются те же команды процессора, что и дл работы с памятью.

2. подключение к магистрали дополнительных устройств не требует изменений в уже существующих устройствах, процессоре, памяти.

3. меняя состав модулей можно изменять мощность и назначение компьютера в процессе его эксплуатации.

Принцип открытой архитектуры – правила построения компьютера, в соответствии с которыми каждый новый блок должен быть совместим со старым и легко устанавливаться в том же месте в компьютере.

В компьютере столь же легко можно заменить старые блоки на новые, где бы они ни располагались, в результате чего работа компьютера не только не нарушается, но и становится более производительной. Этот принцип позволяет не выбрасывать, а модернизировать ранее купленный компьютер, легко заменяя в нем устаревшие блоки на более совершенные и удобные, а так же приобретать и устанавливать новые блоки. Причем во всех разъемы для их подключения являются стандартными и не требуют никаких изменений в самой конструкции компьютера.

• Для чего нужна материнская плата?

• Каково назначение системной шины в компьютере?

• С чем можно сравнить системную шину компьютера?

• Для чего необходимо иметь слоты расширения?

Источник:
http://www.sites.google.com/site/informatika430/home/magistralno-modulnyj-princip-postroenia-pk

Магистрально-модульный принцип построения компьютера

В основу архитектуры современных персональных компьютеров положен магистрально-модульный принцип. Модульный принцип позволяет потребителю самому комплектовать нужную ему конфигурацию компьютера и производить при необходимости ее модернизацию. Модульная организация компьютера опирается на магистральный (шинный) принцип обмена информацией между устройствами.

Магистраль

Магистраль (системная шина) включает в себя три многоразрядные шины: шину данных, шину адреса и шину управления, которые представляют собой многопроводные линии (рис. 4.1). К магистрали подключаются процессор и оперативная память, а также периферийные устройства ввода, вывода и хранения информации, которые обмениваются информацией на машинном языке (последовательностями нулей и единиц в форме электрических импульсов).

Читайте также  Как включить веб камеру на windows 7 и 10 на ноутбуке

Шина данных. По этой шине данные передаются между различными устройствами. Например, считанные из оперативной памяти данные могут быть переданы процессору для обработки, а затем полученные данные могут быть отправлены обратно в оперативную память для хранения. Таким образом, данные по шине данных могут передаваться от устройства к устройству в любом направлении.

Разрядность шины данных определяется разрядностью процессора, то есть количеством двоичных разрядов, которые могут обрабатываться или передаваться процессором одновременно. Разрядность процессоров постоянно увеличивается по мере развития компьютерной техники.

Шина адреса. Выбор устройства или ячейки памяти, куда пересылаются или откуда считываются данные по шине данных, производит процессор. Каждое устройство или ячейка оперативной памяти имеет свой адрес. Адрес передается по адресной шине, причем сигналы по ней передаются в одном направлении — от процессора к оперативной памяти и устройствам (однонаправленная шина).

Разрядность шины адреса определяет объем адресуемой памяти (адресное пространство), то есть количество однобайтовых ячеек оперативной памяти, которые могут иметь уникальные адреса. Количество адресуемых ячеек памяти можно рассчитать по формуле:

N = 2 I , где I — разрядность шины адреса.

Разрядность шины адреса постоянно увеличивалась и в современных персональных компьютерах составляет 36 бит. Таким образом, максимально возможное количество адресуемых ячеек памяти равно:

N = 2 36 = 68 719 476 736.

Шина управления. По шине управления передаются сигналы, определяющие характер обмена информацией по магистрали. Сигналы управления показывают, какую операцию — считывание или запись информации из памяти — нужно производить, синхронизируют обмен информацией между устройствами и так далее.

Важнейшим аппаратным компонентом компьютера является системная плата. На системной плате реализована магистраль обмена информацией, имеются разъёмы для установки процессора, слоты для установки оперативной памяти, а также контроллеров внешних устройств. Кроме термина «системная плата», используется название «материнская плата» (Motherboard).

Процессор

Центральный процессор (ЦП, или центральное процессорное устройство — ЦПУ; англ. central processing unit, сокращенно — CPU, дословно — центральное обрабатывающее устройство) — электронный блок либо микросхема — исполнитель машинных инструкций (кода программ), главная часть аппаратного обеспечения компьютера или программируемого логического контроллера. Иногда называют микропроцессором или просто процессором.

Процессор — это главная микросхема компьютера, его «мозг». Он разрешает выполнять программный код, находящийся в памяти и руководит работой всех устройств компьютера. Чем выше скорость работы процессора, тем выше быстродействие компьютера. Процессор имеет специальные ячейки, которые называются регистрами. Именно в регистрах помещаются команды, которые выполняются процессором, а также данные, которыми оперируют команды. Работа процессора состоит в выборе из памяти в определенной последовательности команд и данных и их выполнении. На этом и базируется выполнение программ.

Главными характеристиками ЦПУ являются: тактовая частота, производительность, разрядность.

Микропроцессор– важнейший элемент компьютера, так как им определяется скорость выполнения машиной программ пользователя. Со времени появления персональных компьютеров (ПК) сменилось несколько поколений процессоров, что составляет следующий ряд в порядке увеличения скорости: 8088, 286, 386SX, 386DX, 486SX, 486DX, 486DX2, Pentium, Pentium Pro и другие.

. разрядность – ширина «такта», по которому передается компьютерная информация: 8, 16, 32 или 64 бита;

. тактовая частота, характеризующая число команд, выполняемых процессором за одну секунду (измеряется в мегагерцах (МГц)). Обычно тактовая частота соответствует 160…200МГц.

Микропроцессор включает в себя:

. арифметико-логическое устройство (АЛУ), которое выполняет операции (микрооперации), необходимые для выполнения команд микропроцессора;

. устройство управления (УУ) – управляет всеми частями компьютера посредством принципов программного управления;

. микропроцессорная память (МПП). В микропроцессоре есть несколько ячеек собственной памяти, они называются регистрами. Некоторые из них предназначены для хранения операндов – величин, участвующих в текущей операции. Такие регистры называются регистрами общего назначения (RON).

Четвёртым этапом, в начале 1970-х годов, стало создание, благодаря прорыву в технологии создания БИС и СБИС (больших и сверхбольших интегральных схем, соответственно), микропроцессора — микросхемы, на кристалле которой физически были расположены все основные элементы и блоки процессора. Фирма Intel в 1971 году создала первый в мире 4-разрядный микропроцессор 4004, предназначенный для использования в микрокалькуляторах. Постепенно практически все процессоры стали выпускаться в формате микропроцессоров. Исключением долгое время оставались только малосерийные процессоры, аппаратно оптимизированные для решения специальных задач (например, суперкомпьютеры или процессоры для решения ряда военных задач), либо процессоры, к которым предъявлялись особые требования по надёжности, быстродействию или защите от электромагнитных импульсов и ионизирующей радиации. Постепенно, с удешевлением и распространением современных технологий, эти процессоры также начинают изготавливаться в формате микропроцессора.

Сейчас слова микропроцессор и процессор практически стали синонимами, но тогда это было не так, потому что обычные (большие) и микропроцессорные ЭВМ мирно сосуществовали ещё, по крайней мере, 10—15 лет, и только в начале 1980-х годов микропроцессоры вытеснили своих старших собратьев. Тем не менее, центральные процессорные устройства некоторых суперкомпьютеров даже сегодня представляют собой сложные комплексы, построенные на основе микросхем большой и сверхбольшой степени интеграции.

Переход к микропроцессорам позволил потом создать персональные компьютеры, которые проникли почти в каждый дом.

Первым общедоступным микропроцессором был 4-разрядный Intel 4004, представленный 15 ноября 1971 года корпорацией Intel. Он содержал 2300 транзисторов, работал на тактовой частоте 92,6 кГц [1] и стоил 300 долл.

Далее его сменили 8-разрядный Intel 8080 и 16-разрядный 8086, заложившие основы архитектуры всех современных настольных процессоров. Из-за распространённости 8-разрядных модулей памяти был выпущен дешевый 8088, упрощенная версия 8086, с 8-разрядной шиной данных.

Затем проследовала его модификация, 80186.

В процессоре 80286 появился защищённый режим с 24-битной адресацией, позволявший использовать до 16 Мб памяти.

Процессор Intel 80386 появился в 1985 году и привнёс улучшенный защищённый режим, 32-битную адресацию, позволившую использовать до 4 Гб оперативной памяти и поддержку механизма виртуальной памяти. Эта линейка процессоров построена на регистровой вычислительной модели.

Параллельно развиваются микропроцессоры, взявшие за основу стековую вычислительную модель.

За годы существования микропроцессоров было разработано множество различных их архитектур. Многие из них (в дополненном и усовершенствованном виде) используются и поныне. Например, Intel x86, развившаяся вначале в 32-битную IA-32, а позже в 64-битную x86-64 (которая у Intel называется EM64T). Процессоры архитектуры x86 вначале использовались только в персональных компьютерах компании IBM (IBM PC), но в настоящее время всё более активно используются во всех областях компьютерной индустрии, от суперкомпьютеров до встраиваемых решений. Также можно перечислить такие архитектуры, как Alpha, POWER, SPARC, PA-RISC, MIPS (RISC-архитектуры) и IA-64 (EPIC-архитектура).

В соврем енных компьютерах процессоры выполнены в виде компактного модуля (размерами около 5×5×0,3 см), вставляющегося в ZIF-сокет (AMD) или на подпружинивающую конструкцию — LGA (Intel). Особенностью разъёма LGA является то, что выводы перенесены с корпуса процессора на сам разъём — socket, находящийся на материнской плате. Большая часть современных процессоров реализована в виде одного полупроводникового кристалла, содержащего миллионы, а с недавнего времени даже миллиарды транзисторов.

Источник:
http://helpiks.org/6-13701.html

Читайте также  Как добавить игру в стим если она есть на компьютере

Во все времена людям нужно было считать. В туманном доисторическом прошлом они считали на пальцах или делали насечки на костях. Примерно около 4000 лет назад, на заре человеческой цивилизации, были изобретены уже довольно сложные системы счисления, позволявшие осуществлять торговые сделки, рассчитывать астрономические циклы, проводить другие вычисления. Несколько тысячелетий спустя, появились первые ручные вычислительные инструменты. А в наши дни сложнейшие вычислительные задачи, как и множество других операций, казалось бы, не связанных с числами, решаются при помощи «электронного мозга», который называется компьютером.

Специалисты, наверное, не преминут заметить, что компьютер — это не мозг (по крайней мере пока — уточнят некоторые). Это просто-напросто еще один инструмент, еще одно устройство, придуманное для того, чтобы облегчить наш труд или усилить нашу власть над природой. Ведь при всем его кажущемся великолепии современный компьютер обладает, по существу, одним-единственным талантом реагировать с молниеносной быстротой на импульсы электрического напряжения. Истинное величие заключено в человеке, его гении, который нашел способ преобразовывать разнообразную информацию, поступающую из реального мира, в последовательность нулей и единиц двоичного кода, т.е. записывать ее на математическом языке, идеально подходящем для электронных схем компьютера.

И все же, пожалуй, ни одна другая машина в истории не привнесла в наш мир столь быстрых и глубоких изменений. Благодаря компьютерам стали возможными такие знаменательные достижения, как посадка аппаратов на поверхность Луны и исследование планет Солнечной системы. Компьютеры создают тысячи удобств и услуг в нашей повседневной жизни. Они управляют анестезионной аппаратурой в операционных, помогают детям учиться в школах, «изобретают» видеотрюки для кинематографа. Компьютеры взяли на себя функции пишущих машинок в редакциях газет и счетных аппаратов в банках. Они улучшают качество телевизионного изображения, управляют телефонными станциями и определяют цену покупок в кассе универсального магазина. Иными словами, они столь прочно вошли в современную жизнь, что обойтись без них практически невозможно.

Именно поэтому важно знать основные принципы работы и устройства компьютера и его основных составных. Именно эти цели для исследования я преследовал в своем реферате.

Магистрально-модульный принцип построения компьютера

В основу архитектуры современных персональных компьютеров положен магистрально-модульный принцип. Модульный принцип позволяет потребителю самому комплектовать нужную ему конфигурацию компьютера и производить при необходимости ее модернизацию. Модульная организация компьютера опирается на магистральный (шинный) принцип обмена информацией между устройствами. Магистраль включает в себя три многоразрядные шины: шину данных, шину адреса и шину управления.

Шина данных. По этой шине данные передаются между различными устройствами. Разрядность шины данных определяется разрядностью процессора, т.е. количеством двоичных разрядов, которые процессор обрабатывает за один такт. За 25 лет, со времени создания первого персонального компьютера (1975 г), разрядность шины данных увеличилась с 8 до 64 бит.

Шина адреса. Каждая ячейка оперативной памяти имеет свой адрес. Адрес передается по адресной шине. Разрядность шины адреса определяет адресное пространство процессора, т.е. количество ячеек оперативной памяти, которые могут иметь уникальные адреса. Количество адресуемых ячеек памяти можно рассчитать по формуле:

N=2 I , где I — разрядность шины адреса.

В первых персональных компьютерах разрядность шины адреса составляла 16 бит, а количество адресуемых ячеек памяти — В современных персональных компьютерах разрядность шины адреса составляет 32 бита, а максимально возможное количество адресуемых ячеек памяти равно N=2 32 =4 294 967 296

Шина управления. По шине управления передаются сигналы, определяющие характер обмена информацией по магистрали. Сигналы управления определяют, какую операцию — считывание или запись информации из памяти — нужно производить, синхронизируют обмен информацией между устройствами и т.д.

Источник:
http://studbooks.net/2429694/informatika/magistralno_modulnyy_printsip_postroeniya_kompyutera

Модульно-магистральный принцип построения ЭВМ

Рис. 1 — Модульно-магистральный принцип

В основу современных персональных компьютеров положен магистрально-модульный принцип. Модульный принцип позволяет комплектовать нужную конфигурацию и производить необходимую модернизацию. Модульный принцип опирается на шинный принцип обмена информацией между модулями Системная шина или магистраль компьютера включает в себя несколько шин различного назначения. Магистраль включает в себя три много разрядные шины:

Шина данных используется для передачи различных данных между устройствами компьютера. Особый тип данных — команды процессора, которые также передаются по шине данных. Основная характеристика шины — количество разрядов, скорость передачи по 64- разрядной шине будет в два раза выше чем по 32- разрядной шине. Передача по шине данных может осуществляться в разных направлениях, например, от процессора к памяти и от памяти к процессору.

Шина адреса применяется для адресации пересылаемых данных, то есть для определения их местоположения в памяти или в устройствах ввода/вывода. При получении (чтении) данных процессор устанавливает на шине адреса тот номер ячейки памяти, где хранятся требуемые данные, а при необходимости сохранить данные — номер той ячейки, где данные будут храниться. Количество всех возможных адресов определяется как 2n, где n- количество разрядов шины адреса.

Например, 32-разрядная шина адреса позволяет адресовать 232 или 4 294 967 296 ячеек памяти.

Шина управления включает в себя управляющие сигналы, которые служат для временного согласования работы различных устройств компьютера, для определения направления передачи данных, для определения форматов передаваемых данных и т.д Одним словом, это служебная информация.

Помимо этих трех шин существует также шина питания , по которой к устройствам компьютера подаются питающие напряжения (обычно это +5В, +12В,-5В, и -12В), а также общие провода («земля») с нулевым потенциалом.

При рассмотрении компьютерных устройств принято различать их архитектуру и структуру.

Архитектурой компьютера называется его описание на некотором общем уровне, включающее описание пользовательских возможностей программирования, системы команд, системы адресации, организации памяти и т.д. Архитектура определяет принципы действия, информационные связи и взаимное соединение основных логических узлов компьютера: процессора, оперативного ЗУ, внешних ЗУ и периферийных устройств. Общность архитектуры разных компьютеров обеспечивает их совместимость с точки зрения пользователя.

Структура компьютера — это совокупность его функциональных элементов и связей между ними. Элементами могут быть самые различные устройства — от основных логических узлов компьютера до простейших схем. Структура компьютера графически представляется в виде структурных схем, с помощью которых можно дать описание компьютера на любом уровне детализации.

Источник:
http://studwood.ru/1890592/informatika/modulno_magistralnyy_printsip_postroeniya